首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   8篇
电工技术   4篇
化学工业   21篇
金属工艺   7篇
机械仪表   3篇
建筑科学   75篇
能源动力   2篇
轻工业   31篇
无线电   44篇
一般工业技术   77篇
冶金工业   70篇
原子能技术   3篇
自动化技术   27篇
  2022年   2篇
  2021年   5篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   13篇
  2014年   8篇
  2013年   14篇
  2012年   14篇
  2011年   26篇
  2010年   15篇
  2009年   17篇
  2008年   21篇
  2007年   27篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   10篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   30篇
  1997年   10篇
  1996年   14篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1966年   1篇
  1913年   1篇
  1912年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
71.
Designing nanoscale objects with the potential to perform externally controlled motion in biological environments is one of the most sought-after objectives in nanotechnology. Different types of chemically and physically powered motors have been prepared at the macro- and microscale. However, the preparation of nanoscale objects with a complex morphology, and the potential for light-driven motion has remained elusive to date. Here, we go a step forward by designing a nanoscale hybrid with a propeller-resembling shape, which can be controlled by focused light under biological conditions. Our hybrid, hereafter "Au@DNA-origami", consists of a spherical gold nanoparticle with self-assembled, biocompatible, two-dimensional (2D) DNA sheets on its surface. As a first step toward the potential utilization of these nanoscale objects as light-driven assemblies in biological environments, we show that they can be optically trapped, and hence translated and deposited on-demand, and that under realistic trapping conditions the thermally induced dehybridization of the DNA sheets can be avoided.  相似文献   
72.
CdSe/CdS semiconductor nanocrystal heterostructures are currently of high interest for the peculiar electronic structure offering unique optical properties. Here, we show that nanorods and tetrapods made of such material combination enable efficient multiexcitonic emission, when the volume of the nanoparticle is maximized. This condition is fulfilled by tetrapods with an arm length of 55 nm and results in a dual emission with comparable intensities from the CdS arms and CdSe core. The relative intensities of the dual emission, originating from exciton phase-space filling and reduced Auger recombination, can be effectively modulated by the photon fluence of the pump laser. The results, obtained under steady-state detection conditions, highlight the properties of tetrapods as multiexciton dual-color emitters.  相似文献   
73.
74.
75.
We demonstrate that optical trapping of multiple silver nanoparticles is strongly influenced by plasmonic coupling of the nanoparticles. Employing dark-field Rayleigh scattering imaging and spectroscopy on multiple silver nanoparticles optically trapped in three dimensions, we experimentally investigate the time-evolution of the coupled plasmon resonance and its influence on the trapping stability. With time the coupling strengthens, which is observed as a gradual red shift of the coupled plasmon scattering. When the coupled plasmon becomes resonant with the trapping laser wavelength, the trap is destabilized and nanoparticles are released from the trap. Modeling of the trapping potential and its comparison to the plasmonic heating efficiency at various nanoparticle separation distances suggests a thermal mechanism of the trap destabilization. Our findings provide insight into the specificity of three-dimensional optical manipulation of plasmonic nanostructures suitable for field enhancement, for example for surface-enhanced Raman scattering.  相似文献   
76.
Molecular cloning of CIF1, a yeast gene necessary for growth on glucose.   总被引:13,自引:0,他引:13  
The cif1 mutation of Saccharomyces cerevisiae (Navon et al., Biochemistry 18, 4487-4499, 1979) causes inability to grow on glucose and absence of catabolite inactivation. We have cloned the CIF1 gene by complementation of function and located it in a 2.75 kb SphI-BstEII fragment situated at ca. 18 kb centromere distal of LYS2 and ca. 80 kb centromere proximal of TYR1 on chromosome II. Southern analysis demonstrated that CIF1 is present in a single copy in the yeast genome. Northern analysis revealed that the corresponding mRNA of 1.8 kb is more abundant in cells grown on galactose than in those grown on glucose. A protein of ca. 54 kDa was predicted from the open reading frame in the sequenced fragment. In strains carrying the cif1 mutation the intracellular concentration of ATP decreased immediately after addition of glucose while the intracellular concentration of cAMP did not increase. cAMP concentration increased in response to galactose or 2,4-dinitrophenol. Disruption of BCY1 or overexpression of CDC25 in a cif1 background did not restore growth on glucose, suggesting that the absence of cAMP signal is not the primary cause of lack of growth on glucose. Complementation tests showed that cif1 is not allelic to fdp1 although the two genes seem to be functionally related.  相似文献   
77.
Scope: Zinc is implicated as an activator for bone formation, however, its influence on bone calcification has not been reported. This study examined how zinc regulates the bone matrix calcification in osteoblasts. Methods and Results: Two osteoblastic MC3T3‐E1 cell subclones (SC 4 and SC 24 as high and low osteogenic differentiation, respectively) were cultured in normal osteogenic (OSM), Zinc deficient (Zn–, 1 μM), or adequate (Zn+, 15 μM) media up to 20 days. Cells (SC 4) were also supplemented with (50 μg/mL) or no ascorbic acid (AA) in combination with Zinc treatment. Zn– decreased collagen synthesis and matrix accumulation. Although AA is essential for collagen formation, its supplementation could not compensate for Zinc deficiency‐induced detrimental effects on extracellular matrix mineralization. Zn– also decreased the medium and cell layer alkaline phosphatase ALP activity. This decreased ALP activity might cause the decrease of Pi accumulation in response to Zn–, as measured by von Kossa staining. Ca deposition in cell layers, measured by Alizarin red S staining, was also decreased by Zn. Conclusion: Our findings suggest that zinc deprivation inhibits extracellular matrix calcification in osteoblasts by decreasing the synthesis and activity of matrix proteins, type I collagen and ALP, and decreasing Ca and Pi accumulation. Therefore zinc deficiency can be considered as risk factor for poor extracellular matrix calcification.  相似文献   
78.
Trace elements often accumulate in keratin-rich tissues. Hair, nails, and horns grow steadily but once formed are metabolically inactive and provide an archive of trace element exposure when analyzed in segments. Here we demonstrate the use of laser ablation ICP-MS for the high-resolution monitoring of trace elements in the horns of seaweed-eating sheep from North Ronaldsay, which live on grass only during lambing time. Due to this peculiar husbandry/dietary pattern and the fact that seaweed is rich in arsenic and iodine, we hoped to use iodine and arsenic as markers for seaweed ingestion. Cross sections and scans along the growing axis (representing the first 8-10 months of the sheep's life) revealed that these elements were not homogeneously distributed in the horn, with arsenic representing the amount of seaweed intake. The scans show the periods in which the lambs were fed on milk and grass and the change to seaweed ingestion with the successive replacement of milk with seaweed; this was supported by the carbon and nitrogen isotope signatures (delta13C and delta15N) of the horn and the arsenic speciation in the horn. The period of low arsenic accumulation in the horn had terrestrial isotope signatures and accumulated arsenic of mainly inorganic origin. The period of high arsenic accumulation was characterized by isotope signatures of marine origin, and the majority of accumulated arsenic in the horn was the main arsenosugar metabolite dimethylarsinic acid. Although we have investigated only four different horns of individual sheep, this study shows that arsenic is not significantly transported with milk. However, the high concentration of arsenic in the oldest part of the horn, which was formed in utero, points to a relatively high placental transport of arsenic while the ewe was eating seaweed. In contrast to arsenic, iodine is transported not only through milk ingestion but also through the placenta in large quantities.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号