首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
化学工业   14篇
能源动力   26篇
轻工业   1篇
石油天然气   2篇
无线电   3篇
一般工业技术   20篇
自动化技术   2篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1996年   3篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
排序方式: 共有68条查询结果,搜索用时 0 毫秒
51.
The effect of ozonation on the microbial activities of domestic well drinking water was investigated, and the influence of the treatment conditions such as pH, temperature, ozone dose, and contact time was elucidated by comparing removal efficiencies. The results revealed that the disinfection of the microorganisms was related to an increase in contact time and thereby increases in Ct values with ozone. Higher ozone doses led to a large amount of microbial inactivation. The addition of hydroxyl and hydronium ions contributed greatly to the destruction of any microorganism in both acidic and basic mediums, achieving 25–88% efficiencies.  相似文献   
52.
In this paper, energetic performance comparison of three trigeneration systems is presented. The systems considered are SOFC-trigeneration, biomass-trigeneration, and solar-trigeneration systems. This study compares the performance of the systems considered when there is only electrical power and the efficiency improvement of these systems when there is trigeneration. Different key output parameters are examined: energy efficiency, net electrical power, electrical to heating and cooling ratios, and (GHG) GHG (greenhouse gas) emissions. This study shows that the SOFC-trigeneration system has the highest electrical efficiency among the three systems. Alternatively, when trigeneration is used, the efficiencies of all three systems considered increase considerably. The maximum trigeneration efficiency of the SOFC-trigeneration system is around 76% while it is around 90% for the biomass-trigeneration system. On the other hand, the maximum trigeneration efficiencies of the solar-trigeneration system is around 90% for the solar mode, 45% for storage and storage mode, and 41% for the storage mode. In addition, this study shows that the emissions of CO2 in kg per MWh of electrical power are high for the biomass-trigeneration and SOFC-trigeneration systems. However, by considering the emissions per MWh of trigeneration, their values drop to less than one fourth.  相似文献   
53.
Three configurations of solid oxide fuel cell (SOFC) micro-combined heat and power (micro-CHP) systems are studied with a particular emphasis on the application for single-family detached dwellings. Biogas is considered to be the primary fuel for the systems studied. In each system, a different method is used for processing the biogas fuel to prevent carbon deposition over the anode of the cells used in the SOFC stack. The anode exit gas recirculation, steam reforming, and partial oxidation are the methods employed in systems I–III, respectively. The results predicted through computer simulation of these systems confirm that the net AC electrical efficiency of around 42.4%, 41.7% and 33.9% are attainable for systems I–III, respectively. Depending on the size, location and building type and design, all the systems studied are suitable to provide the domestic hot water and electric power demands for residential dwellings. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required for the SOFC stack to generate around 1 kW net AC electric power, the thermal-to-electric ratio (TER), the net AC electrical and CHP efficiencies, the biogas fuel consumption, and the excess air required for controlling the SOFC stack temperature is also studied through a detailed sensitivity analysis. The results point out that the cell design voltage is higher than the cell voltage at which the minimum number of cells is obtained for the SOFC stack.  相似文献   
54.
This paper presents the development of a new comprehensive single‐phase model for a flowing electrolyte‐direct methanol fuel cell (FE‐DMFC) to determine the operating range of key input parameters for the optimum performance of the fuel cell. These parameters include the inlet concentration of the FE, as well as the flow rate and thickness of the flowing electrolyte channel (FEC). In addition, in‐house FE‐DMFC experimental results were used to validate the model for the first time. It was found that the experimental and modeling results were in a good agreement. The results of the parametric studies showed that an FE concentration within the range of 1.5 and 3.2 M would yield the best performance, while avoiding the corrosive nature of the liquid electrolyte. Furthermore, an FEC flow rate of 1 mL min?1, at an FEC channel thickness of 0.6 mm, was deemed to be sufficiently high to remove adequate amounts of methanol from the crossover stream. It was also determined that the thinnest possible FEC thickness should be used to provide high power output. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
55.
56.
In this paper, the fracture problem of a thick cylinder subjected to transient thermal stresses is considered. The problem has practical significance in the conventional and nuclear power industries where the structural integrity of components may be damaged due to sudden temperature changes. Neglecting the inertia effects, the thermal fracture problem is uncoupled. First the thermal stresses in a thick cylinder due to a sudden change in temperature are computed separately as a function of time. Then, these stresses are used as external loads in analyzing the fracture of a thick cylinder. The assumed crack, may be an inner edge crack, outer edge crack or an embedded crack. Extensive results are obtained by varying the parameters of the problems. The main parameters affecting fracture are identified and the results are discussed in some detail.  相似文献   
57.
A comprehensive investigation was carried out to study hydrodynamics aspects of secondary air injection in circulating fluidized beds. This article presents modeling and results of computational fluid dynamics simulations of gas-solid flow in the riser section of a laboratory-scale (ID = 0.23 m, height = 7.6 m) circulating fluidized bed with a radial secondary air injector. The gas-solid flow model is based on the two-fluid (Eulerian-Eulerian) approach, where both gas and solids phases are treated as interpenetrating continua. A granular kinetic theory model is used to describe the solids phase stresses. The simulation results are compared with measured pressure drop and axial particle velocity profiles; reasonable agreement is obtained. Qualitatively, excellent agreement is obtained in predicting the increase in solids volume fraction below secondary air ports, the accumulation of solids around the center of the riser due to momentum of secondary air jets, and the absence of the solids down-flow near the wall above the secondary air injection ports, which are the prominent features of secondary air injection observed in the experiments.  相似文献   
58.
59.
This paper presents a fracture analysis for a bent crack in an infinite orthotropic plate subjected to a far-field uniform tensile stress. To determine parameters relevant to the mixed-mode fracture conditions at the tip of the bent crack, the problem is formulated in terms of singular integral equations with generalized Cauchy kernels. The resulting system of equations is then solved numberically employing a Gaussian quadrature and the collocation method. Stress intensity factors, k1 and k2, and the strain energy release rates, GI and GII at the tip of the bent crack are obtained for various values of fibres direction and L2/L1 ratios. Extensive results for a graphite-epoxy unidirectional composite laminate are presented.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号