首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   160篇
  国内免费   2篇
电工技术   37篇
综合类   11篇
化学工业   458篇
金属工艺   51篇
机械仪表   22篇
建筑科学   99篇
矿业工程   9篇
能源动力   51篇
轻工业   108篇
水利工程   15篇
石油天然气   1篇
无线电   128篇
一般工业技术   343篇
冶金工业   80篇
原子能技术   6篇
自动化技术   352篇
  2024年   6篇
  2023年   53篇
  2022年   68篇
  2021年   91篇
  2020年   74篇
  2019年   80篇
  2018年   86篇
  2017年   92篇
  2016年   88篇
  2015年   86篇
  2014年   100篇
  2013年   114篇
  2012年   135篇
  2011年   133篇
  2010年   84篇
  2009年   84篇
  2008年   75篇
  2007年   79篇
  2006年   46篇
  2005年   38篇
  2004年   24篇
  2003年   16篇
  2002年   21篇
  2001年   9篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   5篇
  1979年   1篇
  1976年   4篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1957年   2篇
排序方式: 共有1771条查询结果,搜索用时 15 毫秒
41.
Cellobiohydrolase CbhA from Clostridium thermocellum cellulosome is a multi-modular protein composed starting from the N-terminus of a carbohydrate-binding module (CBM) of family 4, an immunoglobulin(Ig)-like module, a catalytic module of family 9 glycoside hydrolases (GH9), X1(1) and X1(2) modules, a CBM of family 3 and a dockerin module. Deletion of the Ig-like module from the Ig-GH9 construct results in complete inactivation of the GH9 module. The crystal structure of the Ig-GH9 module pair reveals the existence of an extensive module interface composed of over 40 amino acid residues of both modules and maintained through a large number of hydrophilic and hydrophobic interactions. To investigate the importance of these interactions between the two modules, we compared the secondary and tertiary structures and thermostabilities of the individual Ig-like and GH9 modules and the Ig-GH9 module pair using both circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC). Thr230, Asp262 and Asp264 of the Ig-like module are located in the module interface of the Ig-GH9 module pair and are suggested to be important in 'communication' between the modules. These residues were mutated to alanyl residues. The structure, stability and catalytic properties of the native Ig-GH9 and its D264A and T230A/D262A mutants were compared. The results indicate that despite being able to fold relatively independently, the Ig-like and GH9 modules interact and these interactions affect the final fold and stability of each module. Mutations of one or two amino acid residues lead to destabilization and change of the mechanism of thermal unfolding of the polypeptides. The enzymatic properties of native Ig-GH9, D264A and T230A/D262A mutants are similar. The results indicate that inactivation of the GH9 module occurs as a result of multiple structural disturbances finally affecting the topology of the catalytic center.  相似文献   
42.
The role of chemical recycling (CR) as a valuable complementary strategy to mechanical recycling in closing the carbon cycle for carbon-containing waste is currently being discussed in political, economic, and social spheres. However, CR deployment is hindered by uncertainties regarding its environmental impacts and costs compared to conventional waste treatment and chemical production routes. While methods for assessing CR's environmental impacts are the focus of socio-political debates and investigations, techno-economic analyses (TEA) to evaluate costs of CR remain scarce. To contribute to a standardized framework for assessing the economic viability of CR technologies, this article draws on life cycle assessment and TEA literature to develop a six-stage TEA process for CR. A checklist is also presented to support transparent and comprehensive analyses.  相似文献   
43.
The plastic crisis is a key driver for chemical recycling (CR), with focus placed on plastics circularity via Plastics-to-Plastics. This neglects its potential in enabling circularity for a wide range of carbon-containing waste and hinders a critical discussion of its broader contributions to decarbonizing the chemical sector. To address this gap, four CR routes and their integration in the conventional waste treatment and chemical production value chains are briefly reviewed, and reasons proposed for a focus expansion to Waste-to-Products to realize opportunities for closing the carbon cycle via chemical recycling.  相似文献   
44.
Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood‐ and pre‐erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver‐stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood‐stage parasite growth with IC50 values of 1.7 and 3.0 μM and lead to a more prominent developmental attenuation of liver‐stage parasites than the gold‐standard drug, primaquine.  相似文献   
45.
The morphological and structural properties of sodium silicate (Na2O–SiO2) glasses were analyzed using atomic force microscopy (AFM) and light scattering following thermal treatments. AFM observations indicated that the glass surface microstructure evolves during the phase separation mechanisms from continuous interpenetrating phases in the spinodal decomposition process to separated droplets embedded in a continuous matrix for the nucleation/growth one. Raman mapping gave evidence of a phase separation through the nucleation/growth process with formation of silica‐rich clusters characterized by higher polymerization degree as separate droplets. The variations in inhomogeneities versus temperature investigated by Brillouin are exponential for spinodal decomposition and linear in the case of nucleation/growth mechanism. Nuclear magnetic resonance spectroscopy was used to investigate the spatial distribution of the various Qn species present in thermally treated glasses and allows determining fractal dimension between two and three.  相似文献   
46.
Determining good parameter estimates in (exponential smooth transition autoregressive) models is known to be difficult. We show that the phenomena of getting strongly biased estimators is a consequence of the so‐called identification problem, the problem of properly distinguishing the transition function in relation to extreme parameter combinations. This happens in particular for either very small or very large values of the error term variance. Furthermore, we introduce a new alternative model – the TSTAR model – which has similar properties as the ESTAR model but reduces the effects of the identification problem. We also derive a linearity and a unit root test for this model.  相似文献   
47.
The present reactive molecular dynamics (RMD) simulations discuss the formation of interphase regions in cured polymer adhesives. The latter are obtained from the curing of reactive liquid mixtures composed of pentafunctional linkers and bifunctional monomers in contact with idealized surfaces. The present reactive scheme mimics the one of epoxies with amine linkers, i.e., processes investigated experimentally by Possart and co-workers. Generic RMD simulations are performed in a coarse-grained (CG) resolution to evaluate basic principles in curing characterized by preferential interactions. The creation of linker-rich domains is promoted by preferential surface-linker as well as linker-linker interactions in the reactive mixtures. The dimension of the interphase both in the starting mixture and the cured network depends on these preferential interactions which lead to a retardation of the curing velocity. This retardation behavior is mapped by conversion curves as a function of the number of reactive steps and by the spatially resolved profiles of the connected linkers. Although derived by generic potentials, the simulated reduction of the curing velocity is in agreement with experimental results in epoxies. The chosen interactions also imply a smaller number of linker bonds in the interphase than in the bulk region. The present RMD approach offers insight into key parameters of curing processes under the influence of preferential surface interactions coupled to selective attractions in the liquid starting mixture.  相似文献   
48.
In order to investigate the effect of cerium oxide on Cu–Zn-based mixed-oxide catalysts four catalyst samples were characterized by means of XRD, in situ XANES and thermogravimetric analysis. The activity of the catalyst samples was tested for the forward water–gas shift reaction. Cerium oxide was found to increase the crystallinity of the ZnO phase indicating a segregation of the Cu and ZnO phases. The TOF of the water–gas shift reaction based on chemisorption data was found to be independent of composition and preparation conditions of the four catalyst samples. In contrast, the catalyst stability depends on composition and preparation conditions. Cerium oxide impregnated before calcination of the hydrotalcite-based Cu–Zn precursors leads to a more stable water–gas shift catalyst.  相似文献   
49.
Male Colletes cunicularius bees pollinate the orchid, Ophrys exaltata, after being sexually deceived by the orchid’s odor-mimicry of the female bee’s sex pheromone. We detected biologically active volatiles of C. cunicularius by using gas chromatographic–electroantennographic detection (GC-EAD) with simultaneous flame ionization detection. After identification of the target compounds by coupled gas chromatography–mass spectrometry (GC-MS), we performed behavioral tests using synthetic blends of the active components. We detected 22 EAD active compounds in cuticular extracts of C. cunicularius females. Blends of straight chain, odd-numbered alkanes and (Z)-7-alkenes with 21–29 carbon atoms constituted the major biologically active compounds. Alkenes were the key compounds releasing mating behavior, especially those with (Z)-7 unsaturation. Comparison of patterns of bee volatiles with those of O. exaltata subsp. archipelagi revealed that all EAD-active compounds were also found in extracts of orchid labella. Previous studies of the mating behavior in C. cunicularius showed linalool to be an important attractant for patrolling males. We confirmed this with synthetic linalool but found that it rarely elicited copulatory behavior, in accordance with previous studies. A blend of active cuticular compounds with linalool elicited both attraction and copulation behavior in patrolling males. Thus, linalool appears to function as a long-range attractant, whereas cuticular hydrocarbons are necessary for inducing short-range mating behavior.  相似文献   
50.
Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient’s plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号