首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   47篇
电工技术   9篇
化学工业   89篇
金属工艺   4篇
机械仪表   17篇
建筑科学   31篇
能源动力   62篇
轻工业   29篇
水利工程   1篇
无线电   33篇
一般工业技术   94篇
冶金工业   24篇
原子能技术   11篇
自动化技术   69篇
  2024年   1篇
  2023年   13篇
  2022年   12篇
  2021年   18篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   22篇
  2015年   11篇
  2014年   22篇
  2013年   34篇
  2012年   29篇
  2011年   44篇
  2010年   27篇
  2009年   27篇
  2008年   38篇
  2007年   23篇
  2006年   15篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
111.
一般来说,我们采用降压升压拓扑型拓扑来解决汽车应用中的宽阔输入电压范围及冷起动需求。本文将详细解释冷起动的要求.并介绍两种不同的解决方案。其中一种是传统的SPEIC拓扑,而另一种是较新的多开关降压/升压拓扑。  相似文献   
112.
In this paper we propose a neighbourhood structure based on sequential/cyclic moves and a cyclic transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world data sets for high school timetabling in the Netherlands and England. We present results of the cyclic transfer algorithm with different settings on these data sets. The costs decrease by 8–28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers.  相似文献   
113.
A joint experimental and numerical approach is conducted to investigate a turbulent lean premixed stratified flame (flame TSF-A of the Darmstadt stratified burner). First, the distribution of the temperature and main species is obtained experimentally by 1D Raman/Rayleigh scattering. These measurements are used to provide insight into the physics of stratified combustion and to serve as validation data for numerical models. As a second step Large Eddy Simulations (LES) are carried out using tabulated chemistry combined with a thickened flame approach. The chemistry table uses the progress variable and additionally the mixture fraction as a second controlling variable to account for the variation in equivalence ratio. To test the applicability of the model, the influence of artificial thickening on the simulation of stratified flames is investigated by means of a one-dimensional test case. Furthermore, two different grids are used in the three-dimensional simulations to assess the modeling impact. The data obtained from the measurements and simulations are presented and compared along radial profiles at several axial positions. Further information about the interaction of the reaction zone with the mixing layer has been extracted from the LES which is currently not accessible by experiments.  相似文献   
114.
The dynamics of particle formation were investigated for a diffusion-like ethylene flame containing a cooling metal plate on which particles condensed. Small-angle and wide-angle X-ray scattering techniques were combined to follow size- and structural changes of the soot particles using a new detector. The high dynamic range allowed continuous monitoring from the gas to the condensed phase of the gradually growing layer depositing on the plate. Different stages in the process of particle formation were observed. In addition the sub-nanometer structure of the deposited material changed rapidly as the flame was turned off. The detection system and methodology presented are of general interest since they can be further developed and applied to the study of reactive systems for materials processing in gas- and condensed phases.  相似文献   
115.
116.
117.
Measurements of surface temperature and mass loss of decomposing construction materials during rapid pyrolysis are presented. Experiments have been performed with samples of low‐density fiberboard, medium‐density fiberboard, particleboard and poly(methyl methacrylate) in a single particle reactor at temperatures between 300° and 600°C. Ultraviolet laser light was used to excite micrometer‐sized thermographic phosphor particles that were deposited on the investigated materials, and the temperature was obtained from temporally resolved measurements of the laser‐induced emission. The wood‐based materials show a similar behavior, with small differences being attributed to differences in material properties. The surface temperature rapidly increases to about 400°C when a particle is introduced to the hot reactor. The initial phase is followed by rapid decomposition during which the surface temperature is 380°–540°C. The heating rate is slowed down during the rapid pyrolysis, and again increases as the remaining char is heated to the reactor temperature. The poly (methyl methacrylate), however, melts and at high temperatures can be characterized as a liquid with a boiling point of about 400°C. Thermographic phosphors are concluded to be suitable for high precision remote measurements of the surface temperature of decomposing construction materials, and possibilities for further studies and developments of the technique are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
118.
Optoacoustic (OA, photoacoustic) imaging synergistically combines rich optical contrast with the resolution of ultrasound within light-scattering biological tissues. Contrast agents have become essential to boost deep-tissue OA sensitivity and fully exploit the capabilities of state-of-the-art OA imaging systems, thus facilitating the clinical translation of this modality. Inorganic particles with sizes of several microns can also be individually localized and tracked, thus enabling new applications in drug delivery, microrobotics, or super-resolution imaging. However, significant concerns have been raised regarding the low bio-degradability and potential toxic effects of inorganic particles. Bio-based, biodegradable nano- and microcapsules consisting of an aqueous core with clinically-approved indocyanine green (ICG) and a cross-linked casein shell obtained in an inverse emulsion approach are introduced. The feasibility to provide contrast-enhanced in vivo OA imaging with nanocapsules as well as localizing and tracking individual larger microcapsules of 4–5 µm is demonstrated. All components of the developed capsules are safe for human use and the inverse emulsion approach is known to be compatible with a variety of shell materials and payloads. Hence, the enhanced OA imaging performance can be exploited in multiple biomedical studies and can open a route to clinical approval of agents detectable at a single-particle level.  相似文献   
119.
A photoresist system for 3D two-photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self-organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components leads to the formation of 3D co-continuous structures. Subsequent washing-out of the unpolymerized phase reveals the porous polymer structures. To characterize the volume properties of the printed structures, scanning electron microscopy images are recorded from ultramicrotome sections. In addition, the light-scattering properties of the 3D-printed material are analyzed. By adjusting the printing parameters, the porosity can be controlled during 3D printing. As an application example, a functioning miniaturized Ulbricht light-collection sphere is 3D printed and tested.  相似文献   
120.
3D printing has emerged as an enabling technology for miniaturization. High‐precision printing techniques such as stereolithography are capable of printing microreactors and lab‐on‐a‐chip devices for efficient parallelization of biological and biochemical reactions under reduced uptake of reactants. In the world of chemistry, however, up until now, miniaturization has played a minor role. The chemical and thermal stability of regular 3D printing resins is insufficient for sustaining the harsh conditions of chemical reactions. Novel material formulations that produce highly stable 3D‐printed chips are highly sought for bringing chemistry up‐to‐date on the development of miniaturization. In this work, a brief review of recent developments in highly stable materials for 3D printing is given. This work focuses on three highly stable 3D‐printable material systems: transparent silicate glasses, ceramics, and fluorinated polymers. It is further demonstrated that 3D printing is also a versatile technique for surface structuring of polymers to enhance their wetting performance. Such micro/nanostructuring is key to selectively wetting surface patterns that are versatile for chemical arrays and droplet synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号