首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   20篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   55篇
金属工艺   4篇
机械仪表   8篇
建筑科学   17篇
能源动力   5篇
轻工业   34篇
水利工程   10篇
无线电   45篇
一般工业技术   44篇
冶金工业   19篇
原子能技术   3篇
自动化技术   56篇
  2023年   7篇
  2022年   15篇
  2021年   23篇
  2020年   12篇
  2019年   17篇
  2018年   7篇
  2017年   10篇
  2016年   20篇
  2015年   11篇
  2014年   11篇
  2013年   22篇
  2012年   16篇
  2011年   23篇
  2010年   14篇
  2009年   11篇
  2008年   9篇
  2007年   13篇
  2006年   10篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1967年   1篇
排序方式: 共有303条查询结果,搜索用时 31 毫秒
221.

In a composite column, the performance of both the concrete and steel has a considerable effect on the structural behaviour under different loading conditions. This study applies several artificial intelligence (AI) techniques to optimise the bearing capacity of concrete-filled steel tube (CFST) columns. First, the bearing capacity values of the CFST columns are estimated by an artificial neural network (ANN) technique. Using 303 datasets, the outer diameter, concrete compressive strength, tensile yield stress of the steel column, thickness of the steel cover, and length of the applied samples are considered as the model inputs. Following a series of analyses, several ANN models are developed. The ANN model with 8 neurons and 250 iterations is determined as the best model to predict the bearing capacity of the CFST columns. Subsequently, the invasive weed optimisation (IWO) technique, which is considered the most current optimisation algorithm, is developed to maximise the results of the bearing capacity by considering the selected ANN model. To highlight the ability of IWO, the artificial bee colony (ABC) algorithm is also applied. Consequently, it is found that both optimisation algorithms can design input parameters such that the maximum value of the bearing capacity can be obtained. The bearing capacity of the CFST columns from the ABC and IWO techniques indicates that IWO has a better capability of maximising the bearing. Thus, IWO can optimise similar problems with a high rate of performance.

  相似文献   
222.
We propose an architecture based on a hybrid E2E-ERN approach allowing ERN protocols to be inter-operable with current IP-based networks. Without introducing complex operations, the resulting E2E-ERN protocol provides inter and intra protocol fairness and benefits from all ERN advantages when possible. We detail the principle of this novel architecture, called IP-ERN, and show that this architecture is highly adaptive to the network dynamics and is compliant with every TCP feature, IPv4, IPv6 as well as IP-in-IP tunneling solutions. As a possible use case, we test this architecture as a potential candidate to replace Performance Enhancing Proxies (PEPs) commonly-used over satellite IP-based networks. Compared to splitting PEP, the IP-ERN architecture does not break the E2E connectivity, still achieves high satellite link utilization and fairness without needs of extra fault tolerant mechanisms.  相似文献   
223.
The use of hydraulic systems in industrial applications has become widespread due to their advantages in efficiency. In recent years, hybrid actuation systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. A hybrid actuation system resolves energy consumption and noise problems characteristic of conventional hydraulic systems. A new, low-cost hybrid actuator using a DC motor is considered to be a novel linear actuator with various applications such as robotics, automation, plastic injection-molding, and metal forming technology. However, this efficiency gain is often accompanied by a degradation of system stability and control problems. In this paper, to satisfy robust performance requirements, tracking performance specifications, and disturbance attenuation requirements, the design of a robust force controller for a new hybrid actuator using Quantitative Feedback Theory (QFT) is presented. A family of plant models is obtained from measuring frequency responses of the system in the presence of significant uncertainty. Experimental results show that the hybrid actuator can achieve highly robust force tracking even when environmental stiffness set-point force varies. In addition, it is understood that the new system reduces energy use, even though its response is similar to that of a valve-controlled system.  相似文献   
224.
In this paper we describe the theoretical background and practical application of QNA-MC (queueing network analyser supporting multicast), a tool for the analytical evaluation of multicast protocols. QNA-MC is based on the QNA method, which (approximately) analyses open networks of GI|G|m queues. In contrast to standard QNA, QNA-MC allows for the specification and evaluation of multicast routes. As in real multicast communication, packets leaving a particular node can be copied and deterministically routed to several other nodes. In order to analyse such queueing networks, QNA-MC converts the multicast routes to a suitable input for standard QNA. From the results delivered by QNA, QNA-MC then derives several performance measures for multicast streams in the network. A validation of QNA-MC, via a comparison to simulation results, shows that QNA-MC yields very good results. Finally, we give a detailed application example by evaluating different multicast routing algorithms for a realistic video conferencing scenario in the European MBONE.  相似文献   
225.
A nanocomposite based on nanoclay and resol that was modified with cardanol, a natural alkyl phenol, shows improvement for the glass‐fiber‐reinforced epoxy‐composite system. Dispersion of the nanocomposite was investigated by X‐ray, showing good results obtained by the in situ polymerization method. The mechanical properties of the final composites were improved by doping a 6 wt% of nanoclay in cardanol‐modified‐resol (CMR) into the epoxy matrix. The results show that a 15 wt% of CMR in epoxy is a most suitable ratio. Using polyamide as a curing agent instead of other traditional systems, such as anhydrides or amines for epoxy resin, overcame important limitations, further allowing for improved processability. The overall composite performance was enhanced. Additionally, the thermal stability of the system was investigated by thermal gravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3238–3242, 2007  相似文献   
226.
A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol–gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio (R N) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet–visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.  相似文献   
227.
Zinc aluminum hydrotalcite intercalated with molybdate (HTM) and modified by 3-glycidoxypropyltrimethoxysilane (HTM-GS) was prepared and incorporated into a waterborne epoxy coating. The synthesized HTM-GS was characterized by FTIR, XRD, SEM, and TEM. The inhibitive action of HTM-GS on carbon steel was evaluated using electrochemical measurement and SEM/EDX analysis. The corrosion protection of the waterborne epoxy coating containing HTM-GS was evaluated and compared to that of the pure waterborne epoxy coating and the waterborne epoxy coating containing HTM by salt spray test and adhesion measurement. It was shown that the molybdate was intercalated in the hydrotalcite structure and the molybdate contents in HTM and HTM-GS were 16.0 and 13.2 wt%, respectively. The polarization curves obtained on the carbon steel electrode showed that HTM and HTM-GS are anodic corrosion inhibitors, and their inhibition efficiencies at concentration of 3 g/l were 92.0 and 94.7%, respectively. Additionally, HTM and HTM-GS at concentration of 0.5 wt% improved corrosion resistance and adhesion of waterborne epoxy coatings. Surface modification by 3-glycidoxypropyltrimethoxysilane ameliorated the dispersion of HTM in epoxy matrix and the effect of HTM on protection properties of waterborne epoxy coating.  相似文献   
228.
Perovskite oxides like SrTiO3 at the nanoscale are of interest for emerging applications,including high-k dielectrics and sensors.However,their synthesis requires long calcination at the elevated temperature,which is a barrier of their application to flexible electronics.Here,an effective laser-assisted sol-gel method to patternably produce SrTiO3 nanoparticles (-100 nm) in selective areas on polyimide substrates (coated with ITO) is introduced.Importantly,the violet-laser power is just 1 W but sufficient to crystallize the material in a short period (a few seconds).Furthermore,developing a flexible device platform using carbon nanotubes (CNT) and SrTiO3 nanoparticles for detection of humidity changes at room temperature is proposed.The sensor platform has both capacitive and resistive sensing abilities.The resistive mode with a lower power usage (about 0.2 μW) is suitable for long monitoring of humidity in the range of 2% RH and above.The capacitive mode with higher sensitivity,faster response/recovery time (1-3 min),and lower detection limit (0.5% RH) can be used for calibration purposes.The performance of the flexible sensor is still maintained after 5000 bending cycles at 1.5-cm radius.Altogether,our synthesis method and the flexible sensor show chances for mass-producing perovskite oxides at low cost for wearable electronics.  相似文献   
229.
Compression creep tests (CCTs) have been widely used in phenomenological characterization of viscoelastic materials such as glasses. However, disturbed by specimen-tool interface friction, the real stress-strain data regarding the pure viscoelastic deformation are frequently misestimated in conventional CCTs, causing decreased accuracies of the derived viscoelastic parameters. This study proposes a comprehensive CCT-based approach to develop a viscoelastic model with weakened frictional disturbance and enhanced predictive accuracy. An integrated calculation procedure is first built to mathematically characterize the frictional and viscoelastic behaviors of glass during compression. Uniaxial CCTs of a typical borosilicate glass (L-BAL42) are then performed at varied frictional conditions. The quantified coefficients of interface friction indicate that a minor frictional disturbance is achieved when Nickel foils are used as interfacial layers, whereby a more realistic viscoelastic constitutive relation of the glass is derived. The obtained frictional and viscoelastic constants are further incorporated into computational modeling of the CCT and precision molding processes. The demonstrated consistencies between the simulated and measured results (creep displacement and molding force) suggest that, by technically slashing the interface friction and theoretically correcting the friction-involved stress in CCTs, the frictional disturbance to experimental stress-strain data can be effectively weakened, and a viscoelastic model of enhanced predictive accuracy can be thus developed.  相似文献   
230.
Highly ordered SBA‐16 silica mesoporous materials were synthesised hydro‐solvothermally under the acidic medium using SiO2/F127/BuOH/HCl/H2O gel. Pure SiO2 powders were prepared from inexpensive and environmentally friendly silica source of rice husk. The pore size of the materials could be optimised by using a blend of P123 and F127 templates. Sn‐substituted SBA‐16 mesoporous materials were yielded via the direct injection of stannic chloride into the fixed gel in acidic medium. X‐ray diffraction, N2 adsorption, scanning electron microscope/transmission electron microscope results suggest that tin ions were incorporated into the Si‐SBA‐16 framework by isomorphous substitution between Sn and Si ions. Elemental analysis indicates that tin can be substituted in the range of Si/Sn = 21.4–10.5. UV–vis, XPS, TPR‐H2, TPD‐NH3 results reveal that tin atoms are highly dispersed in 4+ oxidation state and mostly occupy in the silica framework. The degree of tin incorporation into silica framework can easily be controlled by a simply adjustment of the H2O and HCl molar ratios. The mesoporous Sn‐SBA‐16 materials were an active benzylation catalyst with almost 100% selectivity to monoalkylated product in alkylation of aromatics with benzyl chloride. © 2011 Canadian Society for Chemical Engineering  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号