首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2596篇
  免费   95篇
  国内免费   1篇
电工技术   18篇
综合类   2篇
化学工业   462篇
金属工艺   33篇
机械仪表   28篇
建筑科学   142篇
矿业工程   6篇
能源动力   64篇
轻工业   215篇
水利工程   18篇
石油天然气   13篇
无线电   145篇
一般工业技术   475篇
冶金工业   734篇
原子能技术   20篇
自动化技术   317篇
  2022年   24篇
  2021年   27篇
  2020年   25篇
  2019年   20篇
  2018年   33篇
  2017年   46篇
  2016年   58篇
  2015年   45篇
  2014年   55篇
  2013年   122篇
  2012年   101篇
  2011年   126篇
  2010年   83篇
  2009年   93篇
  2008年   105篇
  2007年   79篇
  2006年   74篇
  2005年   77篇
  2004年   57篇
  2003年   63篇
  2002年   63篇
  2001年   41篇
  2000年   49篇
  1999年   42篇
  1998年   112篇
  1997年   76篇
  1996年   83篇
  1995年   62篇
  1994年   68篇
  1993年   62篇
  1992年   43篇
  1991年   28篇
  1990年   33篇
  1989年   42篇
  1988年   53篇
  1987年   43篇
  1986年   35篇
  1985年   51篇
  1984年   31篇
  1983年   21篇
  1982年   46篇
  1981年   40篇
  1980年   38篇
  1979年   31篇
  1978年   27篇
  1977年   35篇
  1976年   23篇
  1975年   20篇
  1974年   15篇
  1973年   17篇
排序方式: 共有2692条查询结果,搜索用时 15 毫秒
911.
Although many regard it as the most important step of life cycle assessment, improvement analysis is given relatively little attention in the literature. Most available improvement approaches are highly subjective, and traditional LCA methods often do not account for resources other than fossil fuels. In this work exergy is evaluated as a thermodynamically rigorous way of identifying process improvement opportunities. As a case study, a novel process for producing titanium dioxide nanoparticles is considered. A traditional impact assessment, a first law energy analysis, and an exergy analysis are done at both the process and life cycle scales. The results indicate that exergy analysis provides insights not available via other methods, especially for identifying unit operations with the greatest potential for improvement. Exergetic resource accounting at the life cycle scale shows that other materials are at least as significant as fossil fuels for the production of TiO2 nanoparticles in this process.  相似文献   
912.
A biological detection scheme based on the natural foraging behavior of conditioned honeybees for detecting chemical vapor plumes associated with unexploded ordnance devices utilizes a scanning lidar instrument to provide spatial mapping of honeybee densities. The scanning light detection and ranging (lidar) instrument uses a frequency doubled Nd:YAG microchip laser to send out a series of pulses at a pulse repetition rate of 6.853 kHz. The scattered light is monitored to produce a discrete time series for each range. This discrete time series is then processed using an efficient algorithm that is able to isolate and identify the return signal from a honeybee in a cluttered environment, producing spatially mapped honeybee densities. Two field experiments were performed with the scanning lidar instrument that demonstrate good correlation between the honeybee density maps and the target locations.  相似文献   
913.
914.
915.
In this article we demonstrate that, when evaluating a method for determining prediction intervals, interval size matters more than coverage because the latter can be fixed at a chosen confidence level with good reliability. To achieve the desired coverage, we employ a simple non-parametric method to compute prediction intervals by calibrating estimated prediction errors, and we extend the basic method with a continuum correction to deal with small data sets. In our experiments on a collection of several NIR data sets, we evaluate several existing methods of computing prediction intervals for partial least-squares (PLS) regression. Our results show that, when coverage is fixed at a chosen confidence level, and the number of PLS components is selected to minimize squared error of point estimates, interval estimation based on the classic ordinary least-squares method produces the narrowest intervals, outperforming the U-deviation method and linearization, regardless of the confidence level that is chosen.  相似文献   
916.
We report herein on the integration of novel transparent and conducting one-dimensional photonic crystals that consist of periodically alternating layers of spin-coated antimony-doped tin oxide nanoparticles and sputtered tin-doped indium oxide into organic light emitting diode (OLED) microcavities. The large refractive index contrast between the layers due the porosity of the nanoparticle layer led to facile fabrication of dielectric mirrors with intense and broadband reflectivity from structures consisting of only five bilayers. Because our photonic crystals are easily amenable to large scale OLED fabrication and simultaneously selectively reflective as well as electronically conductive, such materials are ideally suited for integration into OLED microcavities. In such a device, the photonic crystal, which represents a direct drop-in replacement for typical ITO anodes, is capable of serving two necessary functions: (i) as one partially reflecting mirror of the optical microcavity; and (ii) as the anode of the diode.  相似文献   
917.
The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the "degraded" nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands.  相似文献   
918.
The synthesis using the thermal decomposition of metal trifluoroacetates is being widely used to prepare oleate-capped lanthanide-doped upconverting NaYF(4):Er(3+)/Yb(3+) nanoparticles (Ln-UCNPs). These nanoparticles have no inherent aqueous dispersibility and inconvenient postsynthesis treatments are required to render them water dispersible. Here, we have developed a novel and facile approach to obtain water-dispersible, ligand-free, brightly upconverting Ln-UCNPs. We show that the upconversion luminescence is affected by the local environment of the lanthanide ions at the surface of the Ln-UCNPs. We observe a dramatic difference of the integrated upconverted red:green emission ratio for Ln-UCNPs dispersed in toluene compared to Ln-UCNPs dispersed in water. We can enhance or deactivate the upconversion luminescence by pH and H/D isotope vibronic control over the competitive radiative and nonradiative relaxation pathways for the red and green excited states. Direct biofunctionalization of the ligand-free, water-dispersible Ln-UCNPs will enable myriad new opportunities in targeting and drug delivery applications.  相似文献   
919.
The biocompatibility and possible toxicological consequences of engineered nanomaterials, including quantum dots (QDs) due to their unique suitability for biomedical applications, remain intense areas of interest. We utilized advanced imaging approaches to characterize the interactions of CdSe QDs of various sizes and shapes with live immune cells. Particle diffusion and partitioning within the plasma membrane, cellular uptake kinetics, and sorting of particles into lysosomes were all independantly characterized. Using high‐speed total internal reflectance fluorescence (TIRF) microscopy, we show that QDs with an average aspect ratio of 2.0 (i.e., rod‐shaped) diffuse nearly an order of magnitude slower in the plasma membrane than more spherical particles with aspect ratios of 1.2 and 1.6, respectively. Moreover, more rod‐shaped QDs were shown to be internalized into the cell 2‐3 fold more slowly. Hyperspectral confocal fluorescence microscopy demonstrates that QDs tend to partition within the cell membrane into regions containing a single particle type. Furthermore, data examining QD sorting mechanisms indicate that endocytosis and lysosomal sorting increases with particle size. Together, these observations suggest that both size and aspect ratio of a nanoparticle are important characteristics that significantly impact interactions with the plasma membrane, uptake into the cell, and localization within intracellular vesicles. Thus, rather than simply characterizing nanoparticle uptake into cells, we show that utilization of advanced imaging approaches permits a more nuanced and complete examination of the multiple aspects of cell‐nanoparticle interactions that can ultimately aid understanding possible mechanisms of toxicity, resulting in safer nanomaterial designs.  相似文献   
920.
Light scattering plays a prominent role in a wide range of energy-efficient materials and solar applications. Some examples are materials for daylighting, diffusely reflecting sunscreens, foils for radiative cooling and nanocrystalline solar cells. Measurements of the angular profile of light scattering are very useful for obtaining a detailed characterization of the light scattering mechanisms. We review recent theoretical results on the forward and backward light scattering profiles. Forward scattering is of major importance for novel pigmented polymeric daylighting materials. Measurements of scattering profiles are in good agreement with Mie theory. Backscattering profiles from highly diffusely reflecting paints containing titanium oxide-based pigments have also been measured. It seems that scattering from the paint surface dominates at low pigment volume fractions. Results for paints with high pigment volume fractions are interpreted in terms of coherent backscattering effects from the pigment particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号