首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91540篇
  免费   13987篇
  国内免费   199篇
电工技术   1554篇
综合类   93篇
化学工业   26612篇
金属工艺   2382篇
机械仪表   3743篇
建筑科学   2834篇
矿业工程   52篇
能源动力   2908篇
轻工业   10568篇
水利工程   527篇
石油天然气   254篇
武器工业   1篇
无线电   15488篇
一般工业技术   20962篇
冶金工业   6323篇
原子能技术   632篇
自动化技术   10793篇
  2023年   535篇
  2022年   836篇
  2021年   1592篇
  2020年   2260篇
  2019年   3832篇
  2018年   4129篇
  2017年   4386篇
  2016年   5085篇
  2015年   4798篇
  2014年   5478篇
  2013年   7928篇
  2012年   5591篇
  2011年   5990篇
  2010年   5318篇
  2009年   5408篇
  2008年   4752篇
  2007年   4173篇
  2006年   3733篇
  2005年   3157篇
  2004年   3047篇
  2003年   2862篇
  2002年   2773篇
  2001年   2276篇
  2000年   2178篇
  1999年   1583篇
  1998年   2222篇
  1997年   1466篇
  1996年   1213篇
  1995年   965篇
  1994年   737篇
  1993年   692篇
  1992年   498篇
  1991年   503篇
  1990年   426篇
  1989年   407篇
  1988年   322篇
  1987年   280篇
  1986年   260篇
  1985年   234篇
  1984年   200篇
  1983年   154篇
  1982年   152篇
  1981年   131篇
  1980年   130篇
  1979年   102篇
  1978年   95篇
  1977年   126篇
  1976年   158篇
  1975年   80篇
  1974年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
We report on a single‐layer organic memory device made of poly(N‐vinylcarbazole) embedded between an Al electrode and ITO modified with Ag nanodots (Ag‐NDs). Devices exhibit high ON/OFF switching ratios of 104. This level of performance could be achieved by modifying the ITO electrodes with some Ag‐NDs that act as trapping sites, reducing the current in the OFF state. Temperature dependence of the electrical characteristics suggest that the current of the low‐resistance state can be attributed to Schottky charge tunnelling through low‐resistance pathways of Al particles in the polymer layer and that the high‐resistance state can be controlled by charge trapping by the Al particles and Ag‐NDs.  相似文献   
102.
Application-level performance is a key to the adoption and success of the CDMA 2000. To predict this performance in advance, a detailed end-to-end simulation model of a CDMA network is built to include application traffic characteristics, network architecture, network element details using the proposed simulation methodology. We assess the user-perceived application performance when a RAN and a CN adopt different transport architectures such as ATM and IP. To evaluate the user-perceived quality of voice service, we compare the end-to-end packet delay for different vocoder schemes such as G.711, G.726 (PCM), G.726 (ADPCM), and vocoder bypass scheme. By the simulation results, the vocoder bypass scenario shows 30% performance improvement over the others. We also compare the quality of voice service with and without DPS scheduling scheme. We know that DPS scheme keep the voice delay bound even if the service traffic is high. For data packet performance, HTTP v.1.1 shows better performance than that of HTTP v.1.0 due to the pipelining and TCP persistent connection. We may conclude that IP transport technology is better solution for higher FER environment since the packet overhead of IP is smaller than that of ATM for web browsing data traffic, while it shows opposite effect to the small size voice packet in RAN architecture. We show that the 3G-1X EV-DO system gives much better packet delay performance than 3G-1X RTT. The main conclusion is that end-to-end application-level performance is affected by various elements and layers of the network and thus it must be considered in all phases of the development process. Jae-Hyun Kim He received the B.S., M.S., and Ph.D. degrees, all in computer science and engineering, from Hanyang University, Ansan, Korea, in 1991, 1993, and 1996 respectively. In 1996, he was with the Communication Research Laboratory, Tokyo, Japan, as a Visiting Scholar. From April 1997 to October 1998, he was a post-doctoral fellow at the department of electrical engineering, University of California, Los Angeles. From November 1998 to February 2003, he worked as a member of technical staff in Performance Modeling and QoS management department, Bell laboratories, Lucent Technologies, Holmdel, NJ. He has been with the department of electrical engineering, Ajou University, Suwon, Korea, as an assistant professor since 2003. His research interests include QoS issues and cross layer optimization for high-speed wireless communication. Dr. Kim was the recipient of the LGIC Thesis Prize and Samsung Human-Tech Thesis Prize in 1993 and 1997, respectively. He is a member of the Korean Institute of Communication Sciences (KICS), Korea Institute of Telematics and Electronis (KITE), Korea Information Science Society (KISS), and IEEE. Hyun-Jin Lee received the B.S. degree in electrical engineering from Ajou University, Suwon, Korea, in 2004, and is working toward the M.S. degree and Ph. D. degree in electrical engineering at Ajou University. He has been awarded Samsung Human-Tech Thesis Prize in 2004. His research interests QoS, especially network optimization and wireless packet scheduling. He is a member of the KICS. Sung-Min Oh received the B.S. and M. S. degrees in electrical engineering form Ajou University, Suwon, Korea, in 2004, and is working toward the Ph. D. degree in electrical engineering at Ajou University. His research interests QoS performance analysis and 4G network. He is a member of the KICS. Sung-Hyun Cho received his B.S., M.S., and Ph.D. in computer science and engineering from Hanyang University, Korea, in 1995, 1997, and 2001, respectively. From 2001 to 2005, he has been with Samsung Advanced Institute of Technology, where he has been engaged in the design and standardization of MAC and upper layers of B3G, IEEE 802.16e, and WiBro systems. He is currently a MAC part leader in the telecommunication R&D center of Samsung Electronics. His research interests include 4G air interface design, radio resource management, cross layer design, and handoff in wireless systems.  相似文献   
103.
BACKGROUND: In the framework of biological processes used for waste gas treatment, the impact of the inoculum size on the start‐up performance needs to be better evaluated. Moreover, only a few studies have investigated the behaviour of elimination capacity and biomass viability in a two‐phase partitioning bioreactor (TPPB) used for waste gas treatment. Lastly, the impact of ethanol as a co‐substrate remains misunderstood. RESULTS: Firstly, no benefit of inoculation with a high cellular density (>1.5 g L?1) was observed in terms of start‐up performance. Secondly, the TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. The removal efficiency remained above 63% for an inlet concentration of 7 g isopropylbenzene (IPB) m?3 and at some time points reached 92% during an intermittent loading phase (10 h day?1), corresponding to a mean elimination capacity of 4 × 10?3 g L?1 min?1 (240 g m?3 h?1) for a mean IPB inlet load of 6.19 × 10?3 g L?1 min?1 (390 g m?3 h?1). Under continuous IPB loading, the performance of the TPPB declined, but the period of biomass acclimatisation to this operational condition was shorter than 5 days. The biomass grew to approximately 10 g L?1 but the cellular viability changed greatly during the experiment, suggesting an endorespiration phenomenon in the bioreactor. It was also shown that simultaneous degradation of IPB and ethanol occurred, suggesting that ethanol improves the biodegradation process without causing oxygen depletion. CONCLUSION: A water/silicone oil TPPB with ethanol as co‐substrate allowed the removal of a high inlet load of IPB during an experiment lasting 38 days. Copyright © 2008 Society of Chemical Industry  相似文献   
104.
BACKGROUND: Simultaneous removal of sulfur, nitrogen and carbon compounds from wastewaters is a commercially important biological process. The objective was to evaluate the influence of the CH3COO?/NO3? molar ratio on the sulfide oxidation process using an inverse fluidized bed reactor (IFBR). RESULTS: Three molar ratios of CH3COO?/NO3? (0.85, 0.72 and 0.62) with a constant S2?/NO3? molar ratio of 0.13 were evaluated. At a CH3COO?/NO3? molar ratio of 0.85, the nitrate, acetate and sulfide removal efficiencies were approximately 100%. The N2 yield (g N2 g?1 NO3?‐N consumed) was 0.81. Acetate was mineralized, resulting in a yield of 0.65 g inorganic‐C g?1 CH3COO?‐C consumed. Sulfide was partially oxidized to S0, and 71% of the S2? consumed was recovered as elemental sulfur by a settler installed in the IFBR. At a CH3COO?/NO3? molar ratio of 0.72, the efficiencies of nitrate, acetate and sulfide consumption were of 100%, with N2 and inorganic‐C yields of 0.84 and 0.69, respectively. The sulfide was recovered as sulfate instead of S0, with a yield of 0.92 g SO42?‐S g?1 S2? consumed. CONCLUSIONS: The CH3COO?/NO3? molar ratio was shown to be an important parameter that can be used to control the fate of sulfide oxidation to either S0 or sulfate. In this study, the potential of denitrification for the simultaneous removal of organic matter, sulfide and nitrate from wastewaters was demonstrated, obtaining CO2, S0 and N2 as the major end products. Copyright © 2008 Society of Chemical Industry  相似文献   
105.
The densification behavior and grain growth of Ce0.8Gd0.2O1.9 ceramics were investigated with the strontium gallate concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase rapidly up to 0.5 mol% Sr2Ga2O5, and then to decrease with further addition. Dense Ce0.8Gd0.2O1.9 ceramics with 97% of the theoretical density could be obtained for 0.5 mol% Sr2Ga2O5-added specimen sintered at 1250C for 5 h, whereas pure Ce0.8Gd0.2O1.9 ceramics needed to be sintered at 1550C in order to obtain an equivalent theoretical density. The addition of Sr2Ga2O5 was found to promote the sintering properties of Gd2O3-doped CeO2.  相似文献   
106.
A new type of bottom‐emission electroluminescent device is described in which a metal oxide is used as the electron‐injecting contact. The preparation of such a device is simple. It consists of the deposition of a thin layer of a metal oxide on top of an indium tin oxide covered glass substrate, followed by the solution processing of the light‐emitting layer and subsequently the deposition of a high‐workfunction (air‐stable) metal anode. This architecture allows for a low‐cost electroluminescent device because no rigorous encapsulation is required. Electroluminescence with a high brightness reaching 5700 cd m–2 is observed at voltages as low as 8 V, demonstrating the potential of this new approach to organic light‐emitting diode (OLED) devices. Unfortunately the device efficiency is rather low because of the high current density flowing through the device. We show that the device only operates after the insertion of an additional hole‐injection layer in between the light‐emitting polymer (LEP) and the metal anode. A simple model that explains the experimental results and provides avenues for further optimization of these devices is described. It is based on the idea that the barrier for electron injection is lowered by the formation of a space–charge field over the metal‐oxide–LEP interface due to the build up of holes in the LEP layer close to this interface.  相似文献   
107.
Based on the optimal fusion estimation algorithm weighted by scalars in the linear minimum variance sense, a distributed optimal fusion Kalman filter weighted by scalars is presented for discrete‐time stochastic singular systems with multiple sensors and correlated noises. A cross‐covariance matrix of filtering errors between any two sensors is derived. When the noise statistical information is unknown, a distributed identification approach is presented based on correlation functions and the weighted average method. Further, a distributed self‐tuning fusion filter is given, which includes two stage fusions where the first‐stage fusion is used to identify the noise covariance and the second‐stage fusion is used to obtain the fusion state filter. A simulation verifies the effectiveness of the proposed algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
108.
Various compositions of gas sensing films were prepared by the combinatorial deposition of SnO2, ZnO, and WO3 sol solutions and their gas sensing behaviors were investigated. The film composition could be manipulated conveniently via the alternate dropping of different oxide sol solutions. From the correlation between film compositions and gas sensitivities, the selective detection of C2H5OH and CH3COCH3 in the presence of CO, C3H8, H2, and NO2 could be attained. In addition, the discrimination between C2H5OH and CH3COCH3, which is a challenging issue due to their similar chemical nature, becomes possible. This research demonstrates the precise design of the sensor-material composition for the selective gas detection via the combinatorial approach.  相似文献   
109.
He and Grigoryan (Quality and Reliability Engineering International 2002; 18 :343–355) formulated the design of a double‐sampling (DS) s control chart as an optimization problem and solved it with a genetic algorithm. They concluded that the DS s control charts can be a more economically preferable alternative in detecting small shifts than traditional s control charts. We explain that, since they only considered the average sample size when the process is in control, their conclusion is questionable. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号