全文获取类型
收费全文 | 84259篇 |
免费 | 988篇 |
国内免费 | 406篇 |
专业分类
电工技术 | 786篇 |
综合类 | 2316篇 |
化学工业 | 11600篇 |
金属工艺 | 4794篇 |
机械仪表 | 3031篇 |
建筑科学 | 2207篇 |
矿业工程 | 563篇 |
能源动力 | 1108篇 |
轻工业 | 3619篇 |
水利工程 | 1274篇 |
石油天然气 | 342篇 |
无线电 | 9281篇 |
一般工业技术 | 16375篇 |
冶金工业 | 2711篇 |
原子能技术 | 259篇 |
自动化技术 | 25387篇 |
出版年
2021年 | 19篇 |
2020年 | 17篇 |
2019年 | 24篇 |
2018年 | 14456篇 |
2017年 | 13386篇 |
2016年 | 9971篇 |
2015年 | 620篇 |
2014年 | 247篇 |
2013年 | 237篇 |
2012年 | 3156篇 |
2011年 | 9437篇 |
2010年 | 8298篇 |
2009年 | 5561篇 |
2008年 | 6799篇 |
2007年 | 7799篇 |
2006年 | 139篇 |
2005年 | 1233篇 |
2004年 | 1159篇 |
2003年 | 1189篇 |
2002年 | 549篇 |
2001年 | 98篇 |
2000年 | 183篇 |
1999年 | 65篇 |
1998年 | 74篇 |
1997年 | 42篇 |
1996年 | 57篇 |
1995年 | 19篇 |
1994年 | 27篇 |
1993年 | 23篇 |
1992年 | 20篇 |
1991年 | 32篇 |
1988年 | 12篇 |
1985年 | 10篇 |
1980年 | 9篇 |
1969年 | 25篇 |
1968年 | 44篇 |
1967年 | 35篇 |
1966年 | 42篇 |
1965年 | 44篇 |
1964年 | 13篇 |
1963年 | 29篇 |
1962年 | 22篇 |
1961年 | 18篇 |
1960年 | 31篇 |
1959年 | 35篇 |
1958年 | 38篇 |
1957年 | 36篇 |
1956年 | 36篇 |
1955年 | 64篇 |
1954年 | 68篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The Shanghai 65 m radio telescope is currently the largest full range rotatable radio telescope in Asia. Gravity, wind and temperature are the three main factors which may have a bad effect on the reflector’s surface precision. To study the effect of the thermal deformation caused by daily non-uniform temperature fields on the surface precision of the main reflector, both the temperature field and its effect were studied in detail for two typical days (January 15th and July 15th). The method to simulate temperature fields was studied initially, considering heat conduction, solar radiation, shadowing, air convection, sky radiation and ground radiation. Then, an integral parametric thermal finite element model (FEM) of the telescope was established using the ANSYS thermal analysis module. Finally, the effect of non-uniform temperature fields on the surface precision of the main reflector was estimated in terms of the Root Mean Square (RMS) deformation based on temperature transient analysis. The proposed methods and conclusions drawn can provide valuable information for thermal design, thermal monitoring and thermal control of the Shanghai 65 m radio telescope and other similar giant antenna structures. 相似文献
12.
This paper deals with the weight minimization of planar steel trusses by adopting a differential evolution-based algorithm. Square hollow sections are considered. The design optimization refers to size, shape and topology. The design variables are represented by the geometrical dimensions of the cross sections of the different components of the truss, directly involving the size of the structure, and by some geometrical parameters affecting the outer shape of the truss. The topology is included in the optimization search in a particular way, since the designer at different runs of the algorithm can change the number of bays keeping constant the total length of the truss, to successively choose the best optimal solution. The minimum weight optimum design is posed as a single-objective optimization problem subject to constraints formulated in accordance with the current Eurocode 3. The optimal solution is obtained by a Differential Evolutionary (DE) algorithm. In the DE algorithm, a particular combination of mutation and crossover operators is adopted in order to achieve the best solutions and a specific way for dealing with constraints is introduced. The effectiveness of the proposed approach is shown with reference to two case-studies. The analysis results prove the versatility of the optimizer algorithm with regard to the three optimization categories of sizing, shape, topology as well as its high computational performances and its efficacy for practical applications. In particular useful practical indications concerning the geometrical dimensions of the various involved structural elements can be deduced by the optimal solutions: in a truss girder the cross section of the top chord should be bigger than the one of the bottom chord as well as diagonals should be characterized by smaller cross sections with respect to the top and bottom chords in order to simultaneously optimize the weight and ensure an optimal structural behaviour. 相似文献
13.
14.
Morgan Mercredi Trevor J. Vincent Christopher P. Bidinosti Melanie Martin 《Magma (New York, N.Y.)》2017,30(1):1-14
Objective
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue.Materials and methods
Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together.Results
The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested.Conclusion
The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.15.
Victor Adalid André Döring Sreenath Pruthviraj Kyathanahally Christine Sandra Bolliger Chris Boesch Roland Kreis 《Magma (New York, N.Y.)》2017,30(5):429-448
Objective
Simultaneous modeling of true 2-D spectroscopy data, or more generally, interrelated spectral datasets has been described previously and is useful for quantitative magnetic resonance spectroscopy applications. In this study, a combined method of reference-lineshape enhanced model fitting and two-dimensional prior-knowledge fitting for the case of diffusion weighted MR spectroscopy is presented.Materials and methods
Time-dependent field distortions determined from a water reference are applied to the spectral bases used in linear-combination modeling of interrelated spectra. This was implemented together with a simultaneous spectral and diffusion model fitting in the previously described Fitting Tool for Arrays of Interrelated Datasets (FiTAID), where prior knowledge conditions and restraints can be enforced in two dimensions.Results
The benefit in terms of increased accuracy and precision of parameters is illustrated with examples from Monte Carlo simulations, in vitro and in vivo human brain scans for one- and two-dimensional datasets from 2-D separation, inversion recovery and diffusion-weighted spectroscopy (DWS). For DWS, it was found that acquisitions could be substantially shortened.Conclusion
It is shown that inclusion of a measured lineshape into modeling of interrelated MR spectra is beneficial and can be combined also with simultaneous spectral and diffusion modeling.16.
Rachid Deghdak Mohamed Bouchemat Mahieddine Lahoubi Shengli Pu Touraya Bouchemat Hamza Otmani 《Journal of Computational Electronics》2017,16(2):392-400
A kind of magnetic field sensor (MFS) using a two-dimensional (2D) magnetic photonic crystal (MPC) slab waveguide as the sensing structure is proposed and investigated numerically. The slab structure is based on bismuth iron garnet (BIG), a well-known magnetic material with effective magnetooptical (MO) properties, sandwiched with gadolinium gallium garnet (GGG) as substrate. The complete photonic bandgap (PBG) of the 2D MPC is simulated and optimized for realization of polarization-independent waveguides. The simulation results show that the width and position of the complete PBG depend on the thickness of the BIG slab and the radius of the air holes used in the design. By reducing the lightwave propagation losses and enhancing the mode conversion ratio, increased sensitivity is obtained. Based on the Faraday effect, a good linear relationship is observed between the normalized output light intensity and the magnetic field strength as the gyrotropy parameter g is varied from 0.13 to 0.19, a g-range used as the sensor dynamic range. The remarkable enhancement in sensing performance due to the MO effect makes the designed device suitable for magnetic field sensing. The results are discussed to provide a basis for investigation of 2D MPC slab waveguides based on the same structure, which are of particular interest for development of highly sensitive MFSs. 相似文献
17.
18.
Chun-Te Wu Gou-Jen Wang 《The International Journal of Advanced Manufacturing Technology》2018,97(5-8):1711-1717
In this study, we proposed an efficient method for mass production of high-filling-efficiency microfluidic devices. Precision machining was the main process of device fabrication. The commercially available SolidWorks software was adopted for structure design. Unigraphics software was then used to simulate the machining process. The simulated tooling file was then loaded into a CNC milling machine for mold production. The fabricated metal mold was used for pouring polydimethylsiloxane (PDMS) to obtain high-filling-efficiency microfluidic structures. Finally, plasma-assisted packaging was conducted to tightly bind the PDMS microfluidic structure to the glass substrate. Experimental results showed that the additional semicircular filling structure and expended fill-entry structure can efficiently enhance filling efficiency of the microchannel device. The incubation well array can be completely filled at a relatively short filling time. The proposed highly efficient filling microfluidic device possesses advantages, such as feasibility for mass production and cost effectiveness. 相似文献
19.
Chien-Sheng Liu Yu-An Li 《The International Journal of Advanced Manufacturing Technology》2018,99(5-8):1109-1117
In the industrial manufacturing field, machining is a major process. Machining operations involve grinding, drilling, milling, turning, pressing, molding, and so on. Among these operations, grinding is the most precise and complicated process. The surface condition of the grinding wheel plays an important role in grinding performance, and the identification of grinding wheel loading phenomena during the grinding process is critical. Accordingly, this present study describes a measurement method based on the acoustic emission (AE) technique to characterize the loading phenomena of a Si2O3 grinding wheel for the grinding mass production process. The proposed measurement method combines the process-integrated measurement of AE signals, offline digital image processing, and surface roughness measurement of the ground workpieces for the evaluation of grinding wheel loading phenomena. The experimental results show that the proposed measurement method provides a quantitative index from the AE signals to evaluate the grinding wheel loading phenomena online for the grinding mass production process, and this quantitative index is determined via some experiments in advance in the same grinding environment to help the monitoring and controlling of the grinding process. 相似文献
20.
Xiaojin Miao Zhengrong Qiang Meiping Wu Lei Song Feng Ye 《The International Journal of Advanced Manufacturing Technology》2018,95(1-4):71-81
A manufacturing system comprises production processes and building services, both of which are supplied by different energy carriers as well as raw materials and water. These resources interact according to complex relationships and are converted into products for sale and waste flows. Holistic resource accounting allows the analyst to consider the dynamic relationships between these components, including the strong interdependence between energy and water, which has been called the energy-water nexus. Exergy analysis is a method that accounts for mass and both the quantity and quality of energy, while allowing analysis on a common basis, and for this reason, it is used increasingly to analyse resource consumption in manufacturing systems; however, it has rarely been used to consider water flows alongside energy and material flows. The main contribution of this paper is the presentation of modelling water flows in terms of exergy in the context of sustainable manufacturing. Using this technique in combination with previously developed exergy-based methods, the result is a truly holistic resource accounting method for factories based on exergy analysis that incorporates water flows. The method is illustrated using a case study of a food factory in which a 4.1% reduction in resource use is shown to be possible by employing anaerobic digester in an effluent water treatment process. The benefits of this technology option would have been underestimated compared to the benefits of waste heat capture if an analysis based on mass and energy balances alone had been used. The scientific value of this paper is the demonstration of the relatively high exergy content of effluent flows, which should therefore be regarded as potentially valuable resources. The analytical method presented is therefore of value to a wide range of industries beyond the food industry. 相似文献