首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   5篇
电工技术   1篇
化学工业   32篇
机械仪表   4篇
建筑科学   1篇
能源动力   4篇
轻工业   18篇
无线电   13篇
一般工业技术   27篇
冶金工业   3篇
自动化技术   27篇
  2023年   6篇
  2022年   11篇
  2021年   11篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   4篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   17篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
121.
Indium Antimonide (InSb) is a semiconductor material with unique properties, that are suitable for studying new quantum phenomena in hybrid semiconductor-superconductor devices. The realization of such devices with defect-free InSb thin films is challenging, since InSb has a large lattice mismatch with most common insulating substrates. Here, the controlled synthesis of free-standing 2D InSb nanostructures, termed as “nanoflakes”, on a highly mismatched substrate is presented. The nanoflakes originate from the merging of pairs of InSb nanowires grown in V-groove incisions, each from a slanted and opposing {111}B facet. The relative orientation of the two nanowires within a pair, governs the nanoflake morphologies, exhibiting three distinct ones related to different grain boundary arrangements: no boundary (type-I), Σ3- (type-II), and Σ9-boundary (type-III). Low-temperature transport measurements indicate that type-III nanoflakes are of a relatively lower quality compared to type-I and type-II, based on field-effect mobility. Moreover, type-III nanoflakes exhibit a conductance dip attributed to an energy barrier pertaining to the Σ9-boundary. Type-I and type-II nanoflakes exhibit promising transport properties, suitable for quantum devices. This platform hosting nanoflakes next to nanowires and nanowire networks can be used to selectively deposit the superconductor by inter-shadowing, yielding InSb-superconductor hybrid devices with minimal post-fabrication steps.  相似文献   
122.
This study aims at evaluating the deformation changes on three types of root canal rotary instruments with different designs; the Pro-Taper Universal, the V-Taper, and the Liberator systems after clinical use. Measurements were made before and after the instruments were used for treating four human root canals by developing stereo-microscopic images for a number of instruments from the three systems at the same position. All images were transformed to AutoCAD to evaluate changes in measurements before and after use. The results showed that the majority of the tested instruments were subjected to significant deformations along the length of the working parts of the instruments. These deformations were only detected by the AutoCAD program but went unnoticed by either visual or microscopic examinations. The results suggest that AutoCAD could be a ground of developing a chair side “computer image analysis program” to predict and justify discarding of a piece before or during operation. In addition, considerations should be given to the material of construction and new approaches of ion implants, such as electro-polishing, that could improve or at least assist in enhancing the wear resistance of the instruments against the dentine surface.  相似文献   
123.
Chitosan immobilized bentonite (CIB) namely chitosan‐coated bentonite (5% chitosan content) was synthesized in 2% acetic acid solution, followed by crosslinking, using epichlorohydrien (ECH). The so‐obtained crosslinked chitosan immobilized on bentonite (CIB‐ECH) and CIB composites were grafted with polyaniline (PANI) through oxidative‐radical copolymerization using ammonium peroxydisulfate in acidic medium to produce PANI‐grafted crosslinked chitosan immobilized on bentonite (PANI‐g‐CIB‐ECH) and PANI‐grafted‐chitosan immobilized on bentonite (PANI‐g‐CIB) composites, respectively. The resultant composites were characterized by using X‐ray diffraction (XRD), thermo gravimetric analysis/differential scanning calorimetry, scanning electron microscopy, Fourier transform infrared (FTIR), and electrical conductivity. XRD and FTIR analyses indicate that chitosan was not intercalated into the silicate layer. Also the electrical conductivity elucidates that the grafted composites fall in the range required for the application as electrostatic dissipation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41078.  相似文献   
124.
125.
Little is known about the genetic contribution to cigarette smoking and nicotine addiction in Egypt. The dopamine D2 receptor gene contains a TaqI repeat fragment length polymorphism creating two alleles with functional significance, DRD2*A1 and DRD2*A2. We investigated the relationship between these alleles and tobacco use in a study of 389 Egyptian male current smokers (mean age = 40 years; SD = 12). Participants were interviewed in 2004 on their smoking behaviors and quit attempts, and were given the Fagerstr?m Test for Nicotine Dependence (FTND). Blood samples were obtained and genotyped for DRD2 A1and A2 alleles. The frequencies of A1/A2, A1/A2, and A2/A2 genotypes were 6%, 29%, and 65%, respectively. We found no statistically significant association between genotype and age at onset of smoking, years of smoking, FTND score, or average number of cigarettes smoked per day. DRD2 genotype was associated with the number of cigarettes smoked in the past 48 hr (42.2 in A1 carriers vs. 37.6 in A2, p = .03), the previous quit duration (28% in A1 vs. 40% in A2 quit for more than 1 month, p = .05), and the depth of inhalation (82% in A1 vs. 72% in A2 inhaled the smoke deeply, p = .03). Logistic regression analysis including DRD2 genotype, FTND score, age at smoking initiation, marital status, and education as predictors showed that maximum duration of quit time was associated with FTND score (p = .003), DRD2 genotype (p = .01), marital status (p = .03), and age at smoking initiation (p = .04). These findings suggest a modest association between DRD2 genotype and quitting behavior in male cigarette smokers in Egypt.  相似文献   
126.
Background: Type 2 diabetes mellitus is one of the leading causes of morbidity and mortality worldwide and is derived from an accumulation of genetic and epigenetic changes. In this study, we aimed to construct Insilco, a competing endogenous RNA (ceRNA) network linked to the pathogenesis of insulin resistance followed by its experimental validation in patients’, matched control and cell line samples, as well as to evaluate the efficacy of CRISPR/Cas9 as a potential therapeutic strategy to modulate the expression of this deregulated network. By applying bioinformatics tools through a two-step process, we identified and verified a ceRNA network panel of mRNAs, miRNAs and lncRNA related to insulin resistance, Then validated the expression in clinical samples (123 patients and 106 controls) and some of matched cell line samples using real time PCR. Next, two guide RNAs were designed to target the sequence flanking LncRNA/miRNAs interaction by CRISPER/Cas9 in cell culture. Gene editing tool efficacy was assessed by measuring the network downstream proteins GLUT4 and mTOR via immunofluorescence. Results: LncRNA-RP11-773H22.4, together with RET, IGF1R and mTOR mRNAs, showed significant upregulation in T2DM compared with matched controls, while miRNA (i.e., miR-3163 and miR-1) and mRNA (i.e., GLUT4 and AKT2) expression displayed marked downregulation in diabetic samples. CRISPR/Cas9 successfully knocked out LncRNA-RP11-773H22.4, as evidenced by the reversal of the gene expression of the identified network at RNA and protein levels to the normal expression pattern after gene editing. Conclusions: The present study provides the significance of this ceRNA based network and its related target genes panel both in the pathogenesis of insulin resistance and as a therapeutic target for gene editing in T2DM.  相似文献   
127.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
128.
Breast cancer (BC) has recently become the most common cancer type worldwide, with metastatic disease being the main reason for disease mortality. This has brought about strategies for early detection, especially the utilization of minimally invasive biomarkers found in various bodily fluids. Exosomes have been proposed as novel extracellular vesicles, readily detectable in bodily fluids, secreted from BC-cells or BC-tumor microenvironment cells, and capable of conferring cellular signals over long distances via various cargo molecules. This cargo is composed of different biomolecules, among which are the novel non-coding genome products, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and the recently discovered circular RNA (circRNA), all of which were found to be implicated in BC pathology. In this review, the diverse roles of the ncRNA cargo of BC-derived exosomes will be discussed, shedding light on their primarily oncogenic and additionally tumor suppressor roles at different levels of BC tumor progression, and drug sensitivity/resistance, along with presenting their diagnostic, prognostic, and predictive biomarker potential. Finally, benefiting from the miRNA sponging mechanism of action of lncRNAs and circRNAs, we established an experimentally validated breast cancer exosomal non-coding RNAs-regulated target gene axis from already published exosomal ncRNAs in BC. The resulting genes, pathways, gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis could be a starting point to better understand BC and may pave the way for the development of novel diagnostic and prognostic biomarkers and therapeutics.  相似文献   
129.
It is well-recognized that cigarette smoking is a primary risk factor in the development of non-small cell lung cancer (NSCLC), known to account for ~80% of all lung cancers with nicotine recognized as the major addictive component. In investigating the effect of nicotine, brain-derived neurotrophic factor (BDNF), and the β-adrenergic receptor blocker, propranolol, on sensitivity of NSCLC cell lines, A549 and H1299, to cisplatin, we found increased cell viability, and enhanced cisplatin resistance with nicotine and/or BDNF treatment while opposite effects were found upon treatment with propranolol. Cell treatment with epinephrine or nicotine led to EGFR and IGF-1R activation, effects opposite to those found with propranolol. Blocking EGFR and IGF-1R activation increased cell sensitivity to cisplatin in both cell lines. PI3K and AKT activities were upregulated by nicotine or BDNF and downregulated by cell treatment with inhibitors against EGFR and IGF-1R and by propranolol. Apoptosis and cell sensitivity to cisplatin increased upon co-treatment of cells with cisplatin and inhibitors against PI3K or AKT. Our findings shed light on an interplay between nicotine, BDNF, and β-Adrenergic receptor signaling in regulating survival of lung cancer cells and chemoresistance which can likely expand therapeutic opportunities that target this regulatory network in the future.  相似文献   
130.
Network Function Virtualization (NFV) is known for its ability to reduce deployment costs and improve the flexibility and scalability of network functions. Due to processing capacity limitations, the infrastructure provider may need to instantiate multiple instances of the same network function. However, most of network functions are stateful, meaning that the instances of the same function need to keep a common state and hence the need for synchronization among them. In this paper, we address this problem with the goal of identifying the optimal synchronization pattern between the instances in order to minimize the synchronization costs and delay. We propose a novel network function named Synchronization Function able to carry out data collection and further minimize these costs. We first mathematically model this problem as an integer linear program that finds the optimal synchronization pattern and the optimal placement and number of synchronization functions that minimize synchronization costs and ensure a bounded synchronization delay. We also put forward three greedy algorithms to cope with large-scale scenarios of the problem, and we explore the possibility to migrate network function instances to further reduce costs. Extensive simulations show that the proposed algorithms efficiently find near-optimal solutions with minimal computation time and provide better results compared to existing solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号