首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   11篇
  国内免费   2篇
电工技术   5篇
化学工业   176篇
金属工艺   39篇
机械仪表   11篇
建筑科学   4篇
能源动力   32篇
轻工业   21篇
水利工程   2篇
石油天然气   1篇
无线电   28篇
一般工业技术   141篇
冶金工业   22篇
原子能技术   9篇
自动化技术   102篇
  2023年   4篇
  2022年   17篇
  2021年   12篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   15篇
  2016年   14篇
  2015年   11篇
  2014年   31篇
  2013年   58篇
  2012年   50篇
  2011年   39篇
  2010年   27篇
  2009年   44篇
  2008年   27篇
  2007年   17篇
  2006年   13篇
  2005年   17篇
  2004年   12篇
  2003年   18篇
  2002年   11篇
  2001年   9篇
  2000年   12篇
  1999年   7篇
  1998年   12篇
  1997年   12篇
  1996年   15篇
  1995年   5篇
  1993年   9篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   3篇
  1966年   1篇
  1937年   1篇
排序方式: 共有593条查询结果,搜索用时 15 毫秒
21.
In the field of biomaterials and biomedical devices, surface activation has been focused on creating functional groups capable of preferential adsorption of biologically active species (proteins, enzymes, cells, drugs, etc.). In this way an interface can be created between the synthetic material and the biological medium, with the aim of increasing the compatibility of the implant with the human organism. In our experiments a dielectric barrier discharge (DBD), in helium at atmospheric pressure, was used as the source of energy capable of creating active centers that render the functionalized surface favorable to immobilization of biological molecules. Retention of immunoglobulin (IgG) and heparin biomolecules on polyamide‐6 (PA‐6) surfaces after treatment by the DBD was analyzed by atomic force microscopy, adhesion evaluation, and measurement of the contact angle titration in order to assess this incorporation on the treated surfaces. The marked adsorption of the biomolecules on the active sites created by DBD on the exposed surfaces also was related to a complex set of processes, such as enhanced roughness, increased surface wettability, and modified distribution of cationic and anionic groups on the treated surfaces. All these factors could promote interfacial interactions between the specific groups of the biomolecules existing in the biological medium and the type of cationic and/or anionic groups present on the surface. The efficiency of the DBD treatment showed that the DBD technique is useful for preactivation of the polymer surface for immobilization of other biologically active species (such as drugs and enzymes). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1985–1990, 2003  相似文献   
22.
For an alloy to be suitable for use as an implant material, it must have a low specific weight and Young??s modulus, good mechanical properties that are similar to those of bone, and very good corrosion resistance and biocompatibility. In this study, we have developed a novel Ti-20Nb-10Zr-5Ta alloy that is composed of nontoxic, nonallergenic, corrosion-resistant elements. This alloy has low specific weight and Young??s modulus and good mechanical properties. It has a fine microstructure with a matrix that is mainly composed of the ?? phase and some ?? phase due to recrystallization during cooling. It shows elastoplastic behavior with a fairly linear elastic behavior and low Young??s modulus (59 GPa). In addition, its ultimate tensile strength, 0.2% yield strength, and hardness are higher than those of CP Ti, commercial Ti-6Al-4V, and similar ??-type alloys. It exhibited a very stable passive state and its electrochemical parameters and corrosion and ion release rates were better than those of CP Ti in Ringer??s solutions of different pH values that simulate the severe functional conditions of an implant; this is attributable to the beneficial influence of the alloying elements and to the better protective properties of the coated passive film.  相似文献   
23.
The passivity of titanium, binary Ti‐15Mo and ternary Ti‐15Mo‐5Al alloys in hydrochloric acid solutions was studied by potentiostatic, potentiodynamic, linear polarization and electrochemical impedance spectroscopy (EIS) techniques. The anodic passivity of binary Ti‐15Mo and ternary Ti‐15Mo‐5Al titanium alloys differs from that of the base metal in hydrochloric acid solutions. The corrosion potentials of both alloys are nobler than of the titanium because the beneficial effect of molybdenum. The critical passivation current density for binary Ti‐15Mo alloy is higher than of titanium; this fact can be explained by the instability of the constituent phases in hydrochloric acid solutions. Ternary Ti‐15Mo‐5Al alloy exhibits two critical passivation current densities (icr1 and icr2) with higher values than of the base metal and two critical passivation potentials (Ecr1 and Ecr2); at the first critical passivation potential (Ecr1) the porous titanium trioxide (Ti3O5) is formed and at the second critical passivation potential (Ecr2) this oxide is converted to a still higher valence oxide, the compact and protective titanium dioxide (TiO2). The dissolution current densities in the passive range of alloys are higher than of the base metal due the dissolution of the alloying elements in this potential range. The alloys are more resistant than titanium presenting lower corrosion rates. A three time constants equivalent circuit was fitted: one time constant is for the double layer capacity (Cdl) and for the passive film (Rp); another time constant is for the charge transfer reactions visualised by a constant phase element (CPE) and a resistance (R1); the third time constant is for diffusion processes through the passive film represented by a resistance (R2) and a Warburg element (W).  相似文献   
24.
Fine-tuning of the scaffolds structural features for bone tissue engineering can be an efficient approach to regulate the specific response of the osteoblasts. Here, we loaded magnetic nanoparticles aka superparamagnetic iron oxide nanoparticles (SPIONs) into 3D composite scaffolds based on biological macromolecules (chitosan, collagen, hyaluronic acid) and calcium phosphates for potential applications in bone regeneration, using a biomimetic approach. We assessed the effects of organic (chitosan/collagen/hyaluronic acid) and inorganic (calcium phosphates, SPIONs) phase over the final features of the magnetic scaffolds (MS). Mechanical properties, magnetic susceptibility and biological fluids retention are strongly dependent on the final composition of MS and within the recommended range for application in bone regeneration. The MS architecture/pore size can be made bespoken through changes of the final organic/inorganic ratio. The scaffolds undertake mild degradation as the presence of inorganic components hinders the enzyme catalytic activity. In vitro studies indicated that osteoblasts (SaOS-2) on MS9 had similar cell behaviour activity in comparison with the TCP control. In vivo data showed an evident development of integration and resorption of the MS composites with low inflammation activity. Current findings suggest that the combination of SPIONs into 3D composite scaffolds can be a promising toolkit for bone regeneration.  相似文献   
25.
26.
Numerical methods are used to investigate the transient mass transfer from a binary gas bubble to an incompressible liquid. The bubble has two components: A – soluble and B – insoluble in the surrounding fluid. The concentration of A inside the bubble is considered spatially uniform but not constant in time. The maximum value of the initial volumetric fraction of A is 0.3. The mathematical model equations were solved numerically in spherical coordinates system. Creeping flow, moderate Re number flow, 10 ? Re ? 100, and potential flow around the bubble were assumed. The computations focused on the influence of the initial fraction of A and Henry number on the mass transfer rate for Pe ? 104.  相似文献   
27.
Fe(III)-doped TiO2 aerogels are prepared by acid catalyzed sol–gel method followed by supercritical drying, and then heat treatment. Raman spectra together with X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of the iron-doped TiO2 aerogel samples revealed the existence of both anatase and brookite crystalline phases. It was found that the brookite phase formation is favored by the increase of the iron content in the dried samples. XRD measurements show that the lattice constant c of anatase phase decreases with the dopant addition, while the value of a remains essentially unchanged. The microstructure of the investigated samples is relatively compact with small mesopores as revealed from transmission electron microscopy (TEM). The most enhanced photocatalytic activity was exhibited by the TiO2 aerogel sample with 1.8 at.% Fe(III) whose apparent rate constant of the salicylic acid photodegradation was found to be of almost six times higher than that of Degussa P25.  相似文献   
28.
A method for preparing organic–inorganic hybrids containing organophosphorus compounds, silica, and polyaniline (PANI) was developed using sol–gel technique. This method allows the in situ synthesis of organic–inorganic hybrids by reacting tetraethoxysilane (TEOS), aniline, initiator, organophosphorus compound in formic acid. The formic acid has multiple functions: as solvent and acidic media for polymerization of aniline and reagent for sol–gel process. The use of an organophosphorus compound as coupling agent and the introduction of a conductive polymer in silica matrix was investigated.  相似文献   
29.
We deposited BiFeO3 films on stainless steel substrates using a simple low-temperature wet-chemical route. Bismuth and iron nitrates were used as metal source and citric acid as chelating agent to prepare a water solution and deposit the film by dipping the steel substrate in the viscous solution. We have investigated the composition, crystallinity and structure of the BiFeO3 film on steel by X-ray diffraction, X-ray photoelectron spectroscopy, high resolution scanning electron microscopy, conventional and high resolution transmission electron microscopy, and energy dispersive spectroscopy techniques. The film deposited on the steel substrate has two sublayers: a very thin (about 100 nm) nanocrystalline layer, with crystallite size of few nanometers, and a thicker (below 1 μm) crystalline layer.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号