首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   9篇
化学工业   19篇
金属工艺   2篇
机械仪表   2篇
建筑科学   2篇
能源动力   2篇
轻工业   11篇
水利工程   6篇
无线电   8篇
一般工业技术   41篇
冶金工业   6篇
自动化技术   11篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
51.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   
52.
This study attempts to understand local people’s perceptions of climate change, its impacts on agriculture and household food security, and local adaptation strategies in the Hindu-Kush Himalayan (HKH) region, using data from 8083 households (HHs) from four river sub-basins (SBs), i.e. Upper Indus (Pakistan), Eastern Brahmaputra (India), Koshi (Nepal) and Salween and Mekong (China). The majority of households in SBs, in recent years, have perceived that there have been more frequent incidences of floods, landslides, droughts, livestock diseases and crop pests, and have attributed these to climate change. These changes have led to low agricultural production and income, particularly in Eastern Brahmaputra (EB) where a substantial proportion of HHs reported a decline in the production of almost all staple and cash crops, resulting in very low farm income. Consequently, households’ dependency on external food items supplied from plain areas has increased, particularly in the Upper Indus (UI) and EB. After hazards, households face transitory food insecurity owing to damage to their local food systems and livelihood sources, and constrained food supply from other areas. To cope with these, HHs in SBs make changes in their farming practices and livestock management. In EB, 11 % of HHs took on new off-farm activities within the SB and in SM, 23 % of HHs chose out-migration as an adaptation strategy. Lastly, the study proposes policy instruments for attaining sustainable food security, based on agro-ecological potential and opportunities for increasing agricultural resilience and diversity of livelihoods.  相似文献   
53.
The hot deformation behavior of AISI 410 martensitic stainless steel was investigated by conducting hot compression tests between 1173 K (900 °C) and 1423 K (1150 °C) and between strain rates of 0.001 s−1 to 1 s−1. The hyperbolic sine function described the relation well between flow stress at a given strain and the Zener–Hollomon parameter (Z). The variation of flow stress with deformation temperature gave the average value of apparent activation energy as 448 kJ/mol. The strain and stress corresponding to two important points associated with flow curve (i.e., peak strain and the onset of steady-state flow) were related to the Z parameter using power-law equations. A model also was proposed based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation to estimate the fractional softening of dynamic recrystallization at any given strain. This model can be used readily for the prediction of flow stress. The values of n and k, material constants in the JMAK equation, were determined for the studied material. The strains regarding the peak and the onset of steady-state flow were formulated in term of applied strain rate and the constants of the JMAK equation. A good agreement was found between the predicted strains and those obtained by the experimental work.  相似文献   
54.
Hybrid quantum dot–graphene photodetectors have recently attracted substantial interest because of their remarkable performance and low power consumption. However, the performance of the device greatly depends on the interfacial states and photogenerated screening field. As a consequence, the sensitivity is limited and the response time is relatively slow. In order to circumvent these challenges, herein, a composite graphene and graphene quantum dot (GQD) photodetector on lead zirconate titanate (Pb(Zr0.2Ti0.8)O3) (PZT) substrates has been designed to form an ultrasensitive photodetector over a wide range of illumination power. Under 325 nm UV light illumination, the device shows sensitivity as high as 4.06 × 109 A W?1, which is 120 times higher than reported sensitivity of the same class of devices. Plant derived GQD has a broad range of absorptivity and is an excellent candidate for harvesting photons generating electron–hole pairs. Intrinsic electric field from PZT substrate separates photogenerated electron–hole pairs as well as provides the built‐in electric field that causes the holes to transfer to the underlying graphene channel. The composite structure of graphene and GQD on PZT substrate therefore produces a simple, stable, and highly sensitive photodetector over a wide range of power with short response time, which shows a way to obtain high‐performance optoelectronic devices.  相似文献   
55.
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next‐ generation technologies, such as visible‐spectrum communication, superbright solid‐state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single‐layer graphene, and few‐layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl‐ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm?2, about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high‐performance wearable optoelectronic devices.  相似文献   
56.
Proper distribution of thermally conductive nanomaterials in polymer batteries offers new opportunities to mitigate performance degradations associated with local hot spots and safety concerns in batteries. Herein, a direct ink writing (DIW) method is utilized to fabricate polyethylene oxide (PEO) composite polymers electrolytes (CPE) embedded with silane-treated hexagonal boron nitride (S-hBN) platelets and free of any volatile organic solvents. It is observed that the S-hBN platelets are well aligned in the printed CPE during the DIW process. The in-plane thermal conductivity of the printed CPE with the aligned S-hBN platelets is 1.031 W −1 K−1, which is about 1.7 times that of the pristine CPE with the randomly dispersed S-hBN platelets (0.612 W −1 K−1). Thermal imaging shows that the peak temperature (°C) of the printed electrolytes is 24.2% lower than that of the CPE without S-hBN, and 10.6% lower than that of the CPE with the randomly dispersed S-hBN, indicating a superior thermal transport property. Lithium-ion half-cells made with the printed CPE and LiFePO4 cathode displayed high specific discharge capacity of 146.0 mAh g−1 and stable Coulombic efficiency of 91% for 100 cycles at room temperature. This work facilitates the development of printable thermally-conductive polymers for safer battery operations.  相似文献   
57.
Long term water demand forecasting is needed for the efficient planning and management of water supply systems. A Monte Carlo simulation approach is adopted in this paper to quantify the uncertainties in long term water demand prediction due to the stochastic nature of predictor variables and their correlation structures. Three future climatic scenarios (A1B, A2 and B1) and four different levels of water restrictions are considered in the demand forecasting for single and multiple dwelling residential sectors in the Blue Mountains region, Australia. It is found that future water demand in 2040 would rise by 2 to 33 % (median rise by 11 %) and 72 to 94 % (median rise by 84 %) for the single and multiple dwelling residential sectors, respectively under different climatic and water restriction scenarios in comparison to water demand in 2010 (base year). The uncertainty band for single dwelling residential sector is found to be 0.3 to 0.4 GL/year, which represent 11 to 13 % variation around the median forecasted demand. It is found that the increase in future water demand is not notably affected by the projected climatic conditions but by the increase in the dwelling numbers in future i.e. the increase in total population. The modelling approach presented in this paper can provide realistic scenarios of forecasted water demands which would assist water authorities in devising appropriate management strategies to enhance the resilience of the water supply systems. The developed method can be adapted to other water supply systems in Australia and other countries.  相似文献   
58.
The contamination of surface water sources by organic and inorganic pollutants is a major concern in rapidly industrializing countries, and the removal of these potentially hazardous contaminants from the aquatic environment using environmentally friendly technologies is therefore crucial. Biosorption, the passive binding of pollutants using dead biomass, can be achieved using various low-cost agro-industrial residues, which are a convenient substitute to the existing technologies for removing pollutants from aqueous solutions. This review deals with the implementation of sugarcane bagasse as a cost-effective natural biosorbent. We have extensively reviewed the status of research into sugarcane bagasse-based biosorbents in raw and modified forms and explore their efficacy in the removal of pollutants. For this purpose, we considered the bagasse modification processes, modifying agents, and the effects of different experimental variables (for example, biosorbent dosage, initial pollutant ion concentration, solution pH and temperature, contact time, and adsorbent particle size) on the adsorption process and potential. Moreover, we propose the following important goals for future research: (1) determine the adsorption potential of sugarcane bagasse at pilot and industrial scales, (2) demonstrate the efficacies of biosorption techniques for real effluents, and (3) conduct a molecular modeling study to elucidate sugarcane bagasse-associated adsorption mechanism(s).  相似文献   
59.
Load controlled fatigue experiments were performed on 8-ply unidirectional ([0]8) SCS-6-Ti-15-3 metal matrix composites (MMCs) at different temperatures, and the results were interpreted in terms of the overall three-regime framework of fatigue. The emphasis was on understanding the mechanisms and mechanics of constituent damage evolution, and their effects on fatigue life. Most tests were performed at an R-ratio of 0.1, but limited fully-reversed (R = −1) tests were conducted. In regime 1, damage was fiber failure dominated, but the exact mechanisms were different at room and elevated temperatures. In regime 2, observation of matrix cracks and persistent slip bands provided convincing evidence of matrix dominated damage. Weak fiber-matrix interfaces contributed to crack bridging. However, fiber fracture also played an important role in regime 2; tension-tension and tension-compression tests showed similar lives on a maximum fiber stress basis, although the strain range, which primarily controls matrix crack growth, was almost double for R = −1 compared with R = 0 or 0.1. Good agreement was obtained from the different R-ratio tests, between the MMC and matrix data, and data at room and elevated temperatures, when compared based on the strain range in the tension part of a cycle. Analyses and observations of fiber pull-out lengths and fiber fractures in the matrix crack wake provided evidence of fiber damage; the analyses also helped to explain increased fiber bridging with fiber volume fraction. Issues of fatigue life prediction are briefly discussed.  相似文献   
60.
Wang D  Pierre A  Kibria MG  Cui K  Han X  Bevan KH  Guo H  Paradis S  Hakima AR  Mi Z 《Nano letters》2011,11(6):2353-2357
We report on the achievement of wafer-level photocatalytic overall water splitting on GaN nanowires grown by molecular beam epitaxy with the incorporation of Rh/Cr(2)O(3) core-shell nanostructures acting as cocatalysts, through which H(2) evolution is promoted by the noble metal core (Rh) while the water forming back reaction over Rh is effectively prevented by the Cr(2)O(3) shell O(2) diffusion barrier. The decomposition of pure water into H(2) and O(2) by GaN nanowires is confirmed to be a highly stable photocatalytic process, with the turnover number per unit time well exceeding the value of any previously reported GaN powder samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号