首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   21篇
  国内免费   1篇
电工技术   7篇
综合类   1篇
化学工业   211篇
金属工艺   25篇
机械仪表   18篇
建筑科学   9篇
矿业工程   3篇
能源动力   33篇
轻工业   40篇
水利工程   4篇
石油天然气   2篇
无线电   28篇
一般工业技术   87篇
冶金工业   22篇
原子能技术   7篇
自动化技术   95篇
  2023年   4篇
  2022年   41篇
  2021年   63篇
  2020年   28篇
  2019年   30篇
  2018年   33篇
  2017年   26篇
  2016年   28篇
  2015年   26篇
  2014年   24篇
  2013年   30篇
  2012年   36篇
  2011年   27篇
  2010年   32篇
  2009年   26篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   14篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有592条查询结果,搜索用时 62 毫秒
31.
Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.  相似文献   
32.
Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50–150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100–150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.  相似文献   
33.
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.  相似文献   
34.
Phytic acid present in the raw materials can complex with many compounds and therefore limit their availability to the yeast during the alcoholic fermentation process. An effective utilization of biogenic compounds bound in phytates requires a detailed analysis of the raw materials for their phytic acid content. The aim of this study was to characterize the major technological parameters for selected raw materials used in the distilling industry (maize, rye, wheat and triticale grain) and to determine the phytic acid content and the IP6/total phosphorus ratio. The phytic acid hydrolysis rate during the mashing process, with the use of microbial phytases, was analysed. The highest phytic acid concentrations (2.30 ± 0.20 mg/g dry matter) and the highest IP6/total P (80.42 ± 6.99%) were observed in the maize grain samples. Therefore, further studies on the phytic acid hydrolysis rate with the use of various phytases were conducted for the maize grain. The highest hydrolytic activity was observed for the Phytase 10000L preparation. This was the preparation that hydrolysed the phytic acid completely in up to 90 min. The application of a highly effective phytase, in ethanol production from maize grain, could lead to a more effective utilization of the biogenic compounds during the fermentation process. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   
35.
In many pharmaceuticals, a hydrogen atom or hydroxyl group is replaced by a fluorine to increase bioavailability and biostability. The fate of fluorine released from fluorine-containing drugs is not well investigated. The aim of this study was to examine possible fluorination of proteins in rat liver and brain after administration of the fluorinated drug cinacalcet. We assigned 18 Wistar rats to a control group (n = 6) and a group treated with cinacalcet (2 mg kg−1/body weight, 5 days/week), divided into 7 day (n = 6) and 21 day (n = 6) treatment subgroups. Fluorinated proteins were identified using a free proteomics approach; chromatographic separation and analysis by high-resolution mass spectrometry; peptide/protein identification using the Mascot search algorithm; manual verification of an experimentally generated MS/MS spectrum with the theoretical MS/MS spectrum of identified fluorinated peptides. Three fluorinated proteins (spectrin beta chain; carbamoyl-phosphate synthase [ammonia], mitochondrial; 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 1) were identified in the liver and four (spectrin beta chain, dihydropyrimidinase-related protein 4, prominin-2, dihydropyrimidinase-related protein 4) in the brain tissue after 21 days of cinacalcet treatment, but not in the control group. Introduction of fluorine into an organism by administration of fluorinated drugs results in tissue-specific fluorination of proteins.  相似文献   
36.
The presented article characterized microstructural aspects of thermal barrier coatings (TBCs) analysis using methods of electron microscopy such as electron backscatter diffraction (EBSD), transmission/scanning electron microscopy (S/TEM), and TEM. The analyzed TBC system is based on gadolinium zirconate deposited by air plasma spraying method, and additionally, it was subjected to an oxidation test for 500 hr at a temperature of 1,100°C. Moreover, the morphological characterization of feedstock powder was showed. EBSD analysis revealed the inhomogeneity of feedstock materials in the form of complex phase composition. In the case of deposited coating, this method was used to characterize the crystallite size of zirconate coating and phase composition of thermally grown oxide zone. S/TEM and TEM analysis showed morphological details of this zone but not revealed such phase as perovskite oxide of GdAlO3 type.  相似文献   
37.
The stellarator Wendelstein 7-X is under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald. Its superconducting coil system is fixed by a massive structure. During machine operation the coils exert high forces and moments against each other and the central support structure (CSS). Therefore, the detailed analysis of the coil to CSS connections, the so-called central support elements (CSE), is a critical item. The major details of the design have been frozen; nevertheless, there is still need for detailed analysis of the CSEs due to assembly issues, and later on for exploring operational limits of the machine. These analyses have to be performed quickly, reliably, and shall provide results in a standardized form to enable timely responses to the assembly team. Special numerical tools – finite element (FE) parametric models of CSEs – have been developed for the purpose of such analyses. In the models, the geometry, material properties, contact conditions, loads as well as results presentation are defined in a parametric way. The use of the developed models for the definition of the final weld parameters, bolt preloads, assessment of acceptable tolerances, and optimal positions of the CSE-wedges before welding is also discussed.  相似文献   
38.
After Asia, Brazil is the world's largest rice producer. During the processing of the grain, large amounts of husk are generated, corresponding to 22% of its weight. On the other hand, in the process of parboiling, in turn, the final result is considerable volumes of effluents rich in organic matter, generating large amounts of methane gas through anaerobic treatment. Therefore, the SI engine can operate with mixtures of biogas and syngas, generating electricity and heat in the Brazilian rice industries. In addition, it reduces the emissions of polluting gases that are generated with a direct burning of the husks instead of their gasification, as well as the use of methane gas. Accordingly, in this work, it was used the spark-ignition engine operating with one of the typical biogas and syngas compositions generated in the rice industries, named Bio65 (containing 65% of CH4 by vol.), syngas1 (containing 18,3% of H2 by vol.), and syngas2 (containing 13,5% of H2 by vol.), respectively. Additionally, the tests with natural gas as a reference fuel have been performed. It was evaluated the emissions of polluting gases such as CO, NOx and HC, as well as the thermal and electrical efficiency of all tested fuels. An important result that could be observed was that for both natural gas and biogas fuel, the increase in excess ratio (λ) value from 1 to 1.5 led to lower NOx and CO emissions, even if with increased HC emissions. On the other hand, the Indicated Specific Energy Consumption increased to all the fuels tested in lean conditions in almost all ignition advances angles. The research tried to show that biogas and syngas can be used in parboiling rice industries, taking the advantage of the generated gases for energy self-sufficiency as well as reducing emissions.  相似文献   
39.
The formation of self-organized porous titania is achieved by electrochemical anodization under a potentiostatic regime. Anodic titanium oxide (ATO) was fabricated by a three-step self-organized anodization of the Ti foil in an ethylene glycol electrolyte containing 0.38 wt% of NH4F and 1.79 wt% of H2O. Anodizing was carried out at the constant cell potential ranging from 30 to 70 V at the temperature of 20 °C. It was found that nanoporous TiO2 arrays can be obtain only after a short duration of the third step (10 min). The influence of anodizing potential on the structural parameters of porous anodic titania including pore diameter, interpore distance, wall thickness, porosity and pore density was extensively studied. The linear dependencies between interpore distance, pore diameter and wall thickness upon the anodizing potential were found. The regularity of pore arrangement was monitored qualitatively by fast Fourier transforms (FFTs) of top-view FE-SEM images. It was found that the best arrangement of nanopores is observed at 40 V. This finding was confirmed by the analysis of pore circularity. The highest circularity of pores was observed once again at 40 V.  相似文献   
40.
Lysozyme (N-acetyl-muramyl-hydrolase E.C. 3.2.1.17) is a low-molecular enzyme (14,400 Da) found in body secretions, systemic fluids and tissues of humans and animals. Antibacterial activity of lysozyme monomer is limited first of all to Gram-positive bacteria, which is connected with the structure of the cell wall. This enzyme catalyzes hydrolysis of β-glycoside bonds (1–4), releasing N-acetylglucosamine and N-acetylmuramic acid. The spectrum of antibacterial activity of lysozyme may be extended thanks to modifications of the enzyme. The aim of the study was to assess antibacterial activity, hydrolytic activity and surface hydrophobicity of different forms of lysozyme. Chemical and thermo-chemical modification of lysozyme was performed, and the antibacterial action of lysozyme monomer and modified preparations were compared. It was found that in comparison with monomer and the control, all modified preparations exhibit effective action against Gram (−) bacteria Pseudomonas fluorescens. A particularly effective action was found in case of lysozyme subjected to thermo-chemical modification, which was characterized by the highest proportion of oligomeric forms and the highest hydrophobicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号