首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   16篇
电工技术   1篇
化学工业   18篇
机械仪表   1篇
建筑科学   2篇
能源动力   2篇
轻工业   3篇
无线电   30篇
一般工业技术   31篇
冶金工业   15篇
原子能技术   1篇
自动化技术   30篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   4篇
  2013年   5篇
  2012年   12篇
  2011年   11篇
  2010年   14篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
81.
Combustion synthesis (CS) of nickel, titanium, and carbon (graphite) reactant particles can result in NiTi-TiC (stoichiometric) or Ni3Ti-TiC x (nonstoichiometric) composites. Since NiTi exhibits both superelasticity and shape memory properties while Ni3Ti does not, it is important to understand the SHS reaction conditions under which each of these composite systems may be synthesized. The stoichiometry of TiC x , for which 0.3 ≤ x ≤ 0.5, has an important controlling effect on the formation of either Ni3Ti or NiTi; i.e., formation of TiC0.7 results in a depletion of titanium and formation of Ni3Ti. This deficiency should be considered when developing the SHS reaction. This article examines the SHS conditions under which Ni3Ti-TiC x composites are produced. Ignition, combustion, and microstructure characteristics of nickel, titanium, and carbon (graphite) particles were investigated as a function of initial relative density and thermophysical properties of the reactant mixture. Combination of the thermophysical properties and burning velocities controlled TiC x particle size, yielding a dependence of particle size on cooling rate. Theoretical calculations were performed and are in good agreement with the experimental data presented.  相似文献   
82.
Combustion synthesis (CS) of nickel, titanium, and carbon (graphite) reactant particles can result in NiTi−TiC (stoichiometric) or Ni3Ti−TiC x (nonstoichiometric) composites. Since NiTi exhibits both superelasticity and shape memory properties while Ni3Ti does not, it is important to understand the SHS reaction conditions under which each of these composite systems may be synthesized. The stoichiometry of TiC x , for which 0.3≤x≤0.5, has an important controlling effect on the formation of either Ni3Ti or NiTi;i.e., formation of TiC0.7 results in a depletion of titanium and formation of Ni3Ti. This deficiency should be considered when developing the SHS reaction. This article examines the SHS conditions under which Ni3Ti−TiC x composites are produced. Ignition, combustion and microstructure characteristics of nickel, titanium, and carbon (graphite) particles were investigated as a function of initial relative density and thermophysical properties of the reactant mixture. Combination of the thermophysical properties and burning velocities controlled TiC x particle size, yielding a dependence of particle size on cooling rate. Theoretical calculations were performed and are in good agreement with the experimental data presented. Guglielmo Gottoli, formerly Graduate Research Assistant, Metallurgical and Materials Engineering Department, Institute for Space Resources, Colorado School of Mines  相似文献   
83.
Combined treatments which use nanoparticles and drugs could be a synergistic strategy for the treatment of a variety of cancers to overcome drug resistance, low efficacy, and high-dose-induced systemic toxicity. In this study, the effects on human colon adenocarcinoma cells of surface modified Fe3O4 magnetic nanoparticles (MNPs) in combination with sodium butyrate (NaBu), added as a free formulation, were examined demonstrating that the co-delivery produced a cytotoxic effect on malignant cells. Two different MNP coatings were investigated: a simple polyethylene glycol (PEG) layer and a mixed folic acid (FA) and PEG layer. Our results demonstrated that MNPs with FA (FA-PEG@MNPs) have a better cellular uptake than the ones without FA (PEG@MNPs), probably due to the presence of folate that acts as an activator of folate receptors (FRs) expression. However, in the presence of NaBu, the difference between the two types of MNPs was reduced. These similar behaviors for both MNPs likely occurred because of the differentiation induced by butyrate that increases the uptake of ferromagnetic nanoparticles. Moreover, we observed a strong decrease of cell viability in a NaBu dose-dependent manner. Taking into account these results, the cooperation of multifunctional MNPs with NaBu, taking into consideration the particular cancer-cell properties, can be a valuable tool for future cancer treatment.  相似文献   
84.
The desirable self-assembly (SA) of repeated 2D stacked layers requires a “holistic analysis” of three interconnected components: the electrode, the interface, and the molecular component; among them, the contact interface bears the largest burden responsibilities. Epitaxial growth (EG) of coherent 2D+n stacked heterojunction by solvent-free deposition holds great promise, although the feasibility has never been demonstrated given multiple drawbacks (e.g., surface-ligand effect, SLE). Here, it is demonstrated how a coherent 2D+n (n = 3) layered heterorganic film is grown on an archetypal Fe metal electrode. The groundbreaking achievement is the result of the in-vacuum integration of: i) chemical decoupling of the basal organic layer (a ZnII-tetraphenylporphyrine, ZnTPP) from the metal electrode, ii) 2D-ordering of the ZnTPP commensurate to the substrate, iii) rigid, stoichiometric, and orthogonally arranged, the molecule-to-molecule coupling between ZnTPP and a ditopic linear bridging ligand (i.e., DPNDI) guided by SA coordination chemistry, and iv) sharp (chemical) termination of the layered film.  相似文献   
85.
We present continuous wave photoinduced absorption spectroscopy of single-walled carbon nanotubes dispersed in a polymer matrix. The spectrum is dominated by a modulation of the absorption line shape, predominantly of large diameter tubes, that we assigned to electroabsorption caused by local electric fields arising from trapped photoinduced charges. The lack of selectivity in the excitation points to an efficient migration of the photoexcited states, either the singlet excitons or the charges resulting from their dissociation.  相似文献   
86.
Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.  相似文献   
87.
88.
Bioprinting is an emerging technology for the fabrication of patient‐specific, anatomically complex tissues and organs. A novel bioink for printing cartilage grafts is developed based on two unmodified FDA‐compliant polysaccharides, gellan and alginate, combined with the clinical product BioCartilage (cartilage extracellular matrix particles). Cell‐friendly physical gelation of the bioink occurs in the presence of cations, which are delivered by co‐extrusion of a cation‐loaded transient support polymer to stabilize overhanging structures. Rheological properties of the bioink reveal optimal shear thinning and shear recovery properties for high‐fidelity bioprinting. Tensile testing of the bioprinted grafts reveals a strong, ductile material. As proof of concept, 3D auricular, nasal, meniscal, and vertebral disk grafts are printed based on computer tomography data or generic 3D models. Grafts after 8 weeks in vitro are scanned using magnetic resonance imaging and histological evaluation is performed. The bioink containing BioCartilage supports proliferation of chondrocytes and, in the presence of transforming growth factor beta‐3, supports strong deposition of cartilage matrix proteins. A clinically compliant bioprinting method is presented which yields patient‐specific cartilage grafts with good mechanical and biological properties. The versatile method can be used with any type of tissue particles to create tissue‐specific and bioactive scaffolds.  相似文献   
89.
The synthesis of nickel-titanium (NiTi) intermetallic composites is of considerable interest due to the ability to create a porous material with high strength and improved wear resistance. The effects of adding a carbon reactant to modify the reaction products and exothermicity have been studied using two reaction stoichiometries involving elemental nickel, titanium and carbon (graphite). The present study examines the synthesis of porous Ni3Ti intermetallic composites in the presence of calcium nitride or calcium carbonate gasifying agent. Both gasifying agents show significant effects on the ignition characteristics of the reaction, burning velocities and TiC particle sizes present in the final product, but do not affect the combustion temperatures.  相似文献   
90.
Conjugated luminescent polymers and oligomers, exhibiting stimulated emission (SE), are dispersed in polymethylmethacrylate (PMMA), films and optical fibers, either by blending or upon copolymerisation. With this PMMA doping, we aim to achieve gain and ultrafast optical switching. The modification of the dopant's chemical structure allows the tuning of the SE spectral region. Furthermore, we aim to achieve dopant chain isolation while maximising their concentration. In this paper, we present an overview of the research done in this area in the context of the European Union (EU)-funded research project "plastic optical fibers with embedded active polymers for data communications - POLYCOM".  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号