首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   1篇
电工技术   3篇
化学工业   17篇
机械仪表   1篇
建筑科学   1篇
能源动力   1篇
轻工业   2篇
无线电   6篇
一般工业技术   23篇
冶金工业   15篇
自动化技术   19篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   9篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有88条查询结果,搜索用时 171 毫秒
71.
72.
The aim of this study was to prepare and to characterize the structure of Al2O3–3YSZ composites with 5% TiO2 addition as well as the surface modification upon treatments with SnF2 and NaBF4, respectively. SEM micrographs showed the controlled densification of the composites as an effect of 3YSZ and TiO2 addition to alumina matrix. By FTIR and XRD, the characteristics of Al‐O and Zr‐O vibrations, respectively, the diffractions lines related to α‐corundum and zirconia in tetragonal phase were discussed. Qualitative and quantitative results obtained by XPS and ATR FTIR demonstrated that the proposed materials are more sensitive to SnF2 than to NaBF4 treatment.  相似文献   
73.
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein–phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations  in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.  相似文献   
74.
Titanium carbide (TiC) and carbon nanotubes (CNTs) were introduced into zirconium carbide (ZrC) ceramics to improve the fracture toughness. ZrC–TiC and ZrC–TiC–CNT composites containing 0–30 vol.% TiC and 0.25–1 mass% CNT were prepared by spark plasma sintering at temperatures of 1750–1850 °C for 300 s under a pressure of 40 MPa. Densification behavior, microstructure, and mechanical properties of the ZrC-based composites were investigated. Fully dense ZrC–TiC and ZrC–TiC–CNT composites with a relative density of more than 98 % were obtained. Vickers hardness of ZrC-based composites increased with increasing TiC content and the highest hardness was achieved with the addition of 20 vol.% TiC. Addition of CNTs up to 0.5 wt% significantly increased the fracture toughness of ZrC-based composites, whereas the addition of TiC did not have this effect.  相似文献   
75.
We have analysed differential gene expression in v-jun-transformed chicken embryo fibroblasts (CEF) compared to normal CEF by using the directional tag PCR subtraction method. From a first generation of putative Jun targets four clones were selected for study; they are upregulated in jun-transformed cells. Three of these clones showed homology to known genes: glutaredoxin, growth associated protein (GAP)-43/neuromodulin, and phenobarbital-induced cytochrome P450. The expression of these genes was analysed in fibroblasts transformed by various oncogenes. Expression of the glutaredoxin mRNA could be induced by a Jun-estrogen receptor chimaera in the absence of de novo protein biosynthesis. Based on this observation we conclude that glutaredoxin is a direct target of v-Jun.  相似文献   
76.
77.
Multilayered-perceptron-based neural models for calculating the input resistance of electrically thin and thick rectangular microstrip antennas are presented. Eleven learning algorithms—Levenberg-Marquardt, conjugate gradient of Fletcher-Reeves, Bayesian regularization, Broyden-Fletcher-Goldfarb-Shanno, conjugate gradient of Polak-Ribiére, conjugate gradient of Powell-Beale, scaled conjugate gradient, one-step secant, resilient backpropagation, backpropagation with momentum, and backpropagation with adaptive learning rate—are used to train the multilayered perceptrons. The input resistance results obtained with the use of neural models are in very good agreement with the experimental results available in the literature. When the performances of neural models are compared with each other, the best result is obtained from the multilayered perceptrons trained by the Levenberg-Marquardt algorithm. Published in Radiotekhnika i Elektronika, 2007, Vol. 52, No. 5, pp. 517–527. The text was submitted by the authors in English.  相似文献   
78.
79.
In this study, titanium dioxide (TiO2) was used as coating compound to add self-cleaning and antibacterial functionality properties to the cotton fabric. TiO2-consisting coating compounds were prepared at four different processing temperatures (20, 40, 60, and 80°C) in order to examine the influence of process temperature on average particle size. Among the prepared solutions, the one prepared at 80°C process temperature was selected for the dip coating application of the 100% cotton fabric, which formed a transparent nanosized TiO2 film on the fibrous structure of fabric. Dip coating trials were done at five coating temperatures of 20, 40, 60, 80, and 100°C. TiO2-coated and uncoated fabric samples were then tested to evaluate their self-cleaning and antibacterial activities. A self-cleaning activity test was conducted using uncoated and TiO2-coated fabric samples which were stained with hot tea solution via dipping method. Stained fabric samples were illuminated under a solar simulator for the color changes to measure photocatalytic degradation of stain colors. Antibacterial performance of TiO2-coated and uncoated fabric samples was determined against pure cultures of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213.  相似文献   
80.
Cells made from crystalline silicon dominate the market for photovoltaics, but improvements in cost-effectiveness are still necessary for uptake to increase. In this paper, we investigate the fabrication of a cell structure which has the potential to be compatible with cheap low-purity silicon substrates. In our cell design the charge-collecting p–n junction protrudes into the substrate like fingers, thus significantly reducing the required carrier diffusion length compared to a front planar junction cell. The macroporous structure is created by electrochemical anodisation of an n-type silicon substrate in an HF and H2O2 (aqueous) electrolyte. The pores are loaded with a boron-containing glass which is then annealed to diffuse the dopant into the silicon substrate forming a volume junction. The anodisation conditions have been optimised using intentionally contaminated single-crystal silicon as a model system. We characterise the junction formed by electron beam induced current and current–voltage measurements. The anodisation study is extended to n-type multicrystalline silicon and it is found that the orientation of the grains strongly influences the geometry of the pores formed. The potential for using this cell structure for low-cost photovoltaics is discussed and potential problems are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号