首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3258篇
  免费   249篇
  国内免费   11篇
电工技术   37篇
综合类   2篇
化学工业   797篇
金属工艺   179篇
机械仪表   197篇
建筑科学   49篇
矿业工程   3篇
能源动力   170篇
轻工业   307篇
水利工程   5篇
石油天然气   10篇
无线电   527篇
一般工业技术   717篇
冶金工业   132篇
原子能技术   38篇
自动化技术   348篇
  2024年   5篇
  2023年   58篇
  2022年   82篇
  2021年   122篇
  2020年   90篇
  2019年   88篇
  2018年   125篇
  2017年   113篇
  2016年   129篇
  2015年   87篇
  2014年   141篇
  2013年   189篇
  2012年   256篇
  2011年   307篇
  2010年   196篇
  2009年   183篇
  2008年   163篇
  2007年   135篇
  2006年   123篇
  2005年   97篇
  2004年   96篇
  2003年   91篇
  2002年   91篇
  2001年   69篇
  2000年   64篇
  1999年   59篇
  1998年   53篇
  1997年   40篇
  1996年   45篇
  1995年   33篇
  1994年   16篇
  1993年   26篇
  1992年   15篇
  1991年   9篇
  1990年   6篇
  1989年   9篇
  1988年   12篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1984年   12篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1977年   5篇
  1976年   8篇
  1975年   2篇
  1967年   2篇
排序方式: 共有3518条查询结果,搜索用时 15 毫秒
151.
The behaviors and stresses of an O-ring under uniform squeeze rates and internal pressure change with real time. Therefore, the behaviors and stresses of O-rings under uniform squeeze rates and internal pressures should be studied with real time. To achieve this, a loading device for a transparent type photoelastic experiment, through which various internal pressures and uniform squeeze rates are applied, was developed. The validity of the loading device in analyzing the behaviors and stresses of the O-ring under uniform squeeze rates and internal pressures with real time was verified. It was observed that the filling phenomenon of the O-ring into the space between the lower and front side occurred after forcing out continued for a duration of time. The study also indicated that maximum shear stress would be more effective as a fracture parameter than the maximum normal stress fracture criterion for an O-ring made from rubber.  相似文献   
152.
Hydrogen discharge technique of high-strength low alloy steel for high-pressure gaseous hydrogen storage tank was developed by using an electrochemical technique. The electrochemical hydrogen discharge of high-strength low alloy steel were investigated in a deaerated borate buffer solution (0.3 M H3BO3 + 0.074 M N2B4O7, pH = 8.4). By applying a potential of +630 mVSCE which is higher than the hydrogen equilibrium potentials and lower than the pitting potential, the oxidation reaction of metal (Fe → Fe2+ + 2e) is limited and oxidation reaction of the hydrogen (H2 + 2OH → 2H2O + 2e) was induced simultaneously. Thus, the pre-charged hydrogen inside the specimen was eliminated effectively without any damage to the specimen. The electrochemical hydrogen discharge method was performed at 25 °C, 50 °C and 75 °C. The efficiency of hydrogen discharge was accelerated with increasing temperature because the exchange current density of hydrogen is increased with temperature.  相似文献   
153.
We sought to evaluate the transdermal permeation potential of quercetin-loaded ethosomes. Quercetinloaded ethosomes were prepared and characterized with regard to particle size, loading efficiency, stability, and in vitro skin permeation. The optimized formulation of ethosomes was confirmed using 2% egg phosphatidylcholine and hydrated 20% ethanol. After quercetin was applied using this formulation, the stability of the ethosomes was determined when loaded with up to 0.04% quercetin. We observed that loading efficiency was improved with increasing concentrations of quercetin. Ethosomes loaded with 0.04% quercetin showed both the greatest loading efficiency (63.9%±6.0%) and an optimal size range (132±32 nm). Ethosomes loaded with quercetin were superior in skin permeation ability (29.5±7.0 μg/cm2) compared to either ethanolic solution or liposomes. Therefore, we concluded that quercetin-loaded ethosomes increased the skin delivery of quercetin. Our results suggest that quercetin-loaded ethosomes may enhance the effect of cosmetic materials.  相似文献   
154.
Dual‐layer acetylated methyl cellulose (AMC) hollow fiber membranes were prepared by coupling the thermally induced phase separation (TIPS) and non‐solvent induced phase separation (NIPS) methods through a co‐extrusion process. The TIPS layer was optimized by investigating the effects of coagulant composition on morphology and tensile strength. The solvent in the aqueous coagulation bath caused both delayed liquid–liquid demixing and decreased polymer concentration at the membrane surface, leading to porous structure. The addition of an additive (triethylene glycol, (TEG)) to the NIPS solution resolved the adhesion instability problem of the TIPS and NIPS layers, which occurred due to the different phase separation rates. The dual‐layer AMC membrane showed good mechanical strength and performance. Comparison of the fouling resistance of the AMC membranes with dual‐layer polyvinylidene fluoride (PVDF) hollow fiber membranes fabricated with the same method revealed less fouling of the AMC than the PVDF hollow fiber membrane. This study demonstrated that a dual‐layer AMC membrane with good mechanical strength, performance, and fouling resistance can be successfully fabricated by a one‐step process of TIPS and NIPS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42715.  相似文献   
155.
156.
Journal of Mechanical Science and Technology - In this paper, to help reduce the squeal noise produced during the braking of urban railway vehicles, the shape of the disc brake pad was investigated...  相似文献   
157.
For the purpose of utilizing induction heating in the evaporation process, the effects of induction coil design and droplet size on induction heating efficiency are investigated. Electro-magnetic simulations with various induction coil designs were conducted to predict the electro-magnetic field distribution. The induction coils were fabricated in order to verify the simulation results under atmospheric evaporation test conditions. The electro-magnetic simulation results indicated that the magnetic field became widened around the Zn droplet when the size of the Zn droplet increased. This in turn attributed to the increase in induction heating energy efficiency. The energy efficiency of the induction coil with 4-windings was the highest among the 3-, 4-, and 5-windings induction coils. Energy efficiency tendencies derived by the atmospheric evaporation tests corresponded well to the simulation results, and maximum energy efficiency was measured to be 42% under the atmospheric evaporation tests.  相似文献   
158.
High‐temperature‐induced and humidity‐induced degradation behaviors were investigated through the failure analysis of encapsulated Cu(In,Ga)Se2 (CIGS) modules and non‐encapsulated CIGS cells. After being exposed to high temperature (85 °C) for 1000 h, the efficiency loss of CIGS modules and the resistivities of the aluminum‐doped zinc oxide (AZO) layer, CIGS layer, and Mo layer were slightly increased. After damp heat (DH) testing (85 °C/85% RH), the efficiency of some modules decreased significantly accompanied by discoloration, and in these areas, the resistivity of the AZO layers increased markedly. The causes of degradation of CIGS cells after high temperature and DH tests were suggested through X‐ray photoelectron spectroscopy analysis. The high‐temperature‐induced degradation behaviors were revealed to be increases in series resistance of the CIGS cells, due to the adsorption of oxygen on the AZO, CIGS, and Mo layers. The degradation behavior after DH (85 °C/85% RH) exposure was caused by the adsorption of oxygen, as well as the generation of Zn(OH)2 due to water molecules. In particular, the humidity‐induced degradation behavior in discolored CIGS modules was ascribed to the generation of Zn(OH)2 and carboxylic acids in the AZO layer, due to a chemical reaction between the AZO, ethylene‐vinyl acetate copolymer, and water. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
159.
Cartilage lesions are difficult to repair due to low vascular distribution and may progress into osteoarthritis. Despite numerous attempts in the past, there is no proven method to regenerate hyaline cartilage. The purpose of this study was to investigate the ability to use a 3D printed biomatrix to repair a critical size femoral chondral defect using a canine weight-bearing model. The biomatrix was comprised of human costal-derived cartilage powder, micronized adipose tissue, and fibrin glue. Bilateral femoral condyle defects were treated on 12 mature beagles staged 12 weeks apart. Four groups, one control and three experimental, were used. Animals were euthanized at 32 weeks to collect samples. Significant differences between control and experimental groups were found in both regeneration pattern and tissue composition. In results, we observed that the experimental group with the treatment with cartilage powder and adipose tissue alleviated the inflammatory response. Moreover, it was found that the MOCART score was higher, and cartilage repair was more organized than in the other groups, suggesting that a combination of cartilage powder and adipose tissue has the potential to repair cartilage with a similarity to normal cartilage. Microscopically, there was a well-defined cartilage-like structure in which the mid junction below the surface layer was surrounded by a matrix composed of collagen type I, II, and proteoglycans. MRI examination revealed significant reduction of the inflammation level and progression of a cartilage-like growth in the experimental group. This canine study suggests a promising new surgical treatment for cartilage lesions.  相似文献   
160.
A new processing system for the extrusion of microcellular polymer sheets is presented. Specifically, the detailed design of a shaping and cell growth control system is discussed in the context of an overall extrusion system design with particular emphasis on the system level functional requirements of cell nucleation, cell growth, and shaping. The principle of the basic extrusion system design is to shape a nucleated polymer/gas solution flow under pressure and accurate temperature control. In this way, the initial cell growth is controlled so as to prevent degradation of the nucleated cell density during shaping. Two foaming die designs for satisfying the initial shaping and cell growth requirements are presented. Critical experiments are then presented which verified the concept of shaping a nucleated polymer/gas solution. Moreover, these experiments demonstrated the feasibility of the overall microcellular polymer sheet extrusion system design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号