首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3576篇
  免费   190篇
  国内免费   28篇
电工技术   56篇
综合类   32篇
化学工业   742篇
金属工艺   83篇
机械仪表   179篇
建筑科学   93篇
矿业工程   6篇
能源动力   111篇
轻工业   292篇
水利工程   15篇
石油天然气   17篇
无线电   414篇
一般工业技术   554篇
冶金工业   849篇
原子能技术   52篇
自动化技术   299篇
  2024年   5篇
  2023年   40篇
  2022年   91篇
  2021年   116篇
  2020年   74篇
  2019年   79篇
  2018年   96篇
  2017年   110篇
  2016年   103篇
  2015年   98篇
  2014年   125篇
  2013年   168篇
  2012年   180篇
  2011年   224篇
  2010年   180篇
  2009年   163篇
  2008年   163篇
  2007年   102篇
  2006年   102篇
  2005年   80篇
  2004年   81篇
  2003年   77篇
  2002年   76篇
  2001年   71篇
  2000年   52篇
  1999年   75篇
  1998年   294篇
  1997年   188篇
  1996年   131篇
  1995年   82篇
  1994年   66篇
  1993年   47篇
  1992年   41篇
  1991年   41篇
  1990年   22篇
  1989年   27篇
  1988年   25篇
  1987年   21篇
  1986年   16篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   6篇
  1976年   22篇
  1975年   1篇
  1972年   1篇
  1914年   2篇
排序方式: 共有3794条查询结果,搜索用时 15 毫秒
141.
The crystallization of [Ga]-MFI was investigated as a function of synthesis time under atmospheric pressure. The molar composition of the reactants was 100SiO2–Ga2O3–11Na2O–11TPABr–3500H2O. The crystallinity of [Ga]-MFI was examined using several analytical instruments, such as XRD, XPS, XRF, FT-IR, solid state MAS-NMR, and DTG/DTA. [Ga]-MFI was successfully synthesized under atmospheric pressure at 97°C in 72 h. It was found that the nucleation of [Ga]-MFI took quite a long time, but the crystallization took place very fast. It is supposed that the nucleation is the rate-controlling step in [Ga]-MFI synthesis under atmospheric pressure. Consequently, if the induction period of the nucleation can be shortened, it would be possible to synthesize [Ga]-MFI commercially under atmospheric pressure.  相似文献   
142.
The crystallization of the [Ga]-MFI was investigated as a function of synthesis time under atmospheric pressure. The molar composition of the reactants was 100SiO2-Ga2O3-llNa2O-llTPABr-3500H2O. The crystallinity of the [Ga]-MFT was examined by using several analytical instruments, such as XRD, XPS, XRF, FT-IR, solid-statemas-NMR, DTG/DTA, and SEM. The [Ga]-MFI was successfully synthesized under atmospheric pressure at 97 ‡C in 72 h. It was found that the nucleation of the [Ga]-MFI took a quite long time, but the crystallization took place very fast. It is supposed that nucleation is the rate-controlling step in the [Ga]-MFI synthesis under atmospheric pressure. Consequently, if the induction period of the nucleation can be shortened, it would be possible to synthesize the [Ga]-MFI commercially under atmospheric pressure.  相似文献   
143.
This work aims to clarify the photocatalytic degradation mechanism and heat reflectance recovery performance of waterborne acrylic polymer/ZnO nanocomposite coating. To fabricate the nanocomposite coating, ZnO nanoparticles (nano-ZnO) were dispersed into acrylic polymer matrix at the various concentrations from 1 to 6% (by total weight of resin solids). The photocatalytic degradation of nanocomposite coating under ultraviolet (UV) light irradiation has been investigated by monitoring its weight loss and chemical/microstructural/morphological changes. As the topcoat layer, its heat reflectance recovery has been evaluated under UV/condensation exposure by using an artificial dirty mixture of 85 wt% nanoclay, 10 wt% silica particles (1–5 μm), 1 wt% carbon black, and 2 wt% engine oil. After 108-cycle UV/condensation exposure, infrared spectra and weight loss analysis indicated that the maximal degradation for nanocomposite coating is observed at 1 wt% nano-ZnO. On the other hand, after 96 hr of UV light exposure, the nanocomposite coating with1 wt% nano-ZnO could restore effectively the reflective index of solar-heat reflectance coating (from 58.45 to 80.78%). Finally, the photodegradation mechanism of this waterborne acrylic polymer coating has been proposed as the UV-induced formation of CC CO conjugated double bonds. As a result, its self-cleaning phenomenon can be achieved as the recovery of heat reflectance.  相似文献   
144.
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.  相似文献   
145.
146.
Char particles from pyrolyzed biomass vary in particle size and shape. On average, the particles are more elongated the larger their size. The average size‐specific elongation is almost alike for all investigated samples, i.e. independent from their source material and process. The particle collectives cannot be characterized accurately with classical particle size distributions, which assume spherical particle shape. Accounting for their shape, they can be described more accurately with particle size distributions that are based on an ellipsoid model. The high bulk porosity is mainly attributed to the spaces between particles.  相似文献   
147.
A new enantioselective synthetic method for the synthesis of α,α‐dialkylmalonates with a quaternary carbon center was developed via α‐alkylation of prochiral malonates by phase‐transfer catalysis (PTC). Asymmetric α‐alkylation of benzylideneamino tert‐butyl α‐methylmalonates under phase‐transfer catalytic conditions in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide afforded the corresponding α,α‐dialkylmalonates in high yields (up to 97%) with excellent enantioselectivities (up to 98% ee). The products were then selectively hydrolyzed to chiral malonic monoacids under basic, acidic, or catalytic hydrogenation conditions.

  相似文献   

148.
Polynorbornene/sepiolite hybrid nanocomposite films were prepared using polynorbornene dicarboximide and modified sepiolite with 3‐ aminopropyltriethoxysilane (3‐APTES). Exo‐N‐(3,5‐dichlorophenylnorbornene)‐5,6‐dicarboxyimide (monomer) and their copolymers were synthesized via ring‐opening polymerization using ruthenium catalysts. Subsequently, the surface‐modified sepiolite by 3‐APTES was mixed with the polynorbornene copolymers to prepare hybrid nanocomposite films. The modified sepiolite particles were well dispersed in N,N‐dimethylacetamide and distributed randomly throughout the polynorbornene matrix in the hybrid films, which enhanced the dimensional stability and mechanical and oxygen barrier properties of the polynorbornene/sepiolite hybrid nanocomposite films. © 2014 Society of Chemical Industry  相似文献   
149.
The phase behaviors of crystalline solids embedded within nanoporous matrices have been studied for decades. Classic nucleation theory conjectures that phase stability is determined by the balance between an unfavorable surface free energy and a stabilizing volume free energy. The size constraint imposed by nanometer-scale pores during crystallization results in large ratios of surface area to volume, which are reflected in crystal properties. For example, melting points and enthalpies of fusion of nanoscale crystals can differ drastically from their bulk scale counterparts. Moreover, confinement within nanoscale pores can dramatically influence crystallization pathways and crystal polymorphism, particularly when the pore dimensions are comparable to the critical size of an emerging nucleus. At this tipping point, the surface and volume free energies are in delicate balance and polymorph stability rankings may differ from bulk. Recent investigations have demonstrated that confined crystallization can be used to screen for and control polymorphism. In the food, pharmaceutical, explosive, and dye technological sectors, this understanding and control over polymorphism is critical both for function and for regulatory compliance. This Account reviews recent studies of the polymorphic and thermotropic properties of crystalline materials embedded in the nanometer-scale pores of porous glass powders and porous block-polymer-derived plastic monoliths. The embedded nanocrystals exhibit an array of phase behaviors, including the selective formation of metastable amorphous and crystalline phases, thermodynamic stabilization of normally metastable phases, size-dependent polymorphism, formation of new polymorphs, and shifts of thermotropic relationships between polymorphs. Size confinement also permits the measurement of thermotropic properties that cannot be measured in bulk materials using conventional methods. Well-aligned cylindrical pores of the polymer monoliths also allow determination and manipulation of nanocrystal orientation. In these systems, the constraints imposed by the pore walls result in a competition between crystal nuclei that favors those with the fastest growth direction aligned with the pore axis. Collectively, the examples described in this Account provide substantial insight into crystallization at a size scale that is difficult to realize by other means. Moreover, the behaviors resulting from nanoscopic confinement are remarkably consistent for a wide range of compounds, suggesting a reliable approach to studying the phase behaviors of compounds at the nanoscale. Newly emerging classes of porous materials promise expanded explorations of crystal growth under confinement and new routes to controlling crystallization outcomes.  相似文献   
150.
Thermal oxidation of edible oils can generate 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging compounds from oxidized lipids (RSOLs). However, effects of photosensitization on the formation of RSOLs have not been reported yet. Methylene blue (MB) photosensitization and involvement of singlet oxygen and transition metals on the RSOL formations were determined in stripped lard oils. RSOLs were formed in lard containing MB and visible light irradiation only. Addition of sodium azide decreased RSOLs with concentration dependent manner, which implies singlet oxygen was involved on the RSOL formation. Ethylenediammetetraacetic acid (EDTA), a well known metal chelator, accelerated the formation of RSOLs through protecting the decomposition of MB photosensitizer. Results from p‐anisidine values showed that RSOLs from photosensitization may not be formed from the same pathways compared to thermal oxidation. Practical application: Understanding mechanisms of lipid oxidation can help extend the shelf‐life of foods. Photosensitization plays important roles in accelerating the rates of lipid oxidation. The results of this study showed that foods containing photosensitizers can generate radical scavenging compounds from oxidized lipids (RSOLs) under visible light irradiation and singlet oxygen is involved in the formations of these compounds. However, these compounds may not share the same pathways with thermally oxidized lipids. Metal chelating agents accelerated the rates of lipid oxidation and formation of RSOLs which implies that metal chelators can act as prooxidant. Careful considerations are necessary on the addition of metal chelators because non‐polar photosensitizers can act a prooxidant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号