首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74679篇
  免费   7067篇
  国内免费   3406篇
电工技术   4705篇
技术理论   3篇
综合类   4459篇
化学工业   12810篇
金属工艺   4350篇
机械仪表   4928篇
建筑科学   5459篇
矿业工程   2220篇
能源动力   2122篇
轻工业   5168篇
水利工程   1211篇
石油天然气   4067篇
武器工业   602篇
无线电   9173篇
一般工业技术   9842篇
冶金工业   3708篇
原子能技术   892篇
自动化技术   9433篇
  2024年   330篇
  2023年   1412篇
  2022年   2539篇
  2021年   3611篇
  2020年   2646篇
  2019年   2334篇
  2018年   2516篇
  2017年   2666篇
  2016年   2371篇
  2015年   3199篇
  2014年   3928篇
  2013年   4532篇
  2012年   4788篇
  2011年   5249篇
  2010年   4270篇
  2009年   4236篇
  2008年   4210篇
  2007年   3722篇
  2006年   3907篇
  2005年   3157篇
  2004年   2198篇
  2003年   2066篇
  2002年   1939篇
  2001年   1709篇
  2000年   1677篇
  1999年   1766篇
  1998年   1455篇
  1997年   1255篇
  1996年   1093篇
  1995年   949篇
  1994年   718篇
  1993年   514篇
  1992年   449篇
  1991年   342篇
  1990年   293篇
  1989年   266篇
  1988年   177篇
  1987年   131篇
  1986年   84篇
  1985年   80篇
  1984年   52篇
  1983年   54篇
  1982年   51篇
  1981年   29篇
  1980年   35篇
  1979年   23篇
  1978年   21篇
  1977年   15篇
  1976年   21篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
51.
多井评价是建立在单井精细解释对比分析基础上的预测储层及含油气性平面分布规律的技术方法,而常规测井资料无法区分碳酸盐岩岩溶储层,因而利用多井评价结果确定岩溶发育程度在平面上的分布规律就显得十分重要。为此,在岩心标定成像测井的基础上,对四川盆地高石梯—磨溪地区15口井的成像测井岩溶发育特征进行分析,建立了中二叠统茅口组岩溶发育各分带的标准成像图版,利用交会图及直方图分析各分带的常规测井响应特征,在此基础上形成了电成像测井刻度常规测井识别岩溶发育带的新方法。研究结果表明:①高石梯—磨溪地区茅口组岩溶带自上而下可划分为风化壳残积带、垂直渗流岩溶带、水平潜流岩溶带以及受岩溶作用较弱的基岩;②风化壳残积带在成像测井图像显示为"暗—亮—暗"条带状模式,垂直渗流岩溶带为垂直线状与暗色斑状组合模式,水平潜流岩溶带为水平线状—层状与斑状组合模式,基岩整体显示为亮色块状模式偶见线状或斑状特征;③有效储层主要发育在垂直渗流带和水平潜流带的顶部;④该区茅口组岩溶发育主要受裂缝发育控制,而裂缝发育又与断层关系密切。结论认为,该新方法对碳酸盐岩岩溶储层的多井评价具有普遍适用性,为四川盆地中二叠统风险探井的部署提供了技术支撑。  相似文献   
52.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
53.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
54.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
55.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   
56.
结合实例详解了华中数控系统复合循环指令G71在实际编程与加工中的应用。此指令的应用,解决了在加工轴类零件过程中运用传统的加工方法难以满足形状复杂、精度高等要求的问题,从而提高了工作效率。  相似文献   
57.
The relationship between the particle size distribution and the extinguishing effectiveness of the new K‐powder fire extinguishing agent has been studied experimentally, to explore the reason of the great extinguishing efficiency exhibited by the new K‐powder fire extinguishing agent on Class B fire (liquid fuel fire). The results of the experiment showed that the extinguishing effectiveness increased along with the decrease of the particle size distribution. In addition, a sharp discontinuity appeared around the limiting size, about 40 μm. The powder with the particle size below 40 μm exhibited highly effective extinguishing with the minimum effective extinguishing concentration Cxr = 23 g·m?3, while the powder with the particle size above 40 μm exhibited little fire extinguishing efficiency. Compared with other fire extinguishing agents produced by different substances, the new K‐powder fire extinguishing has the bigger limiting size. That means, in the same particle size distribution, the new K‐powder fire extinguishing agent contains more highly effective powder than others contain, and is more effective.  相似文献   
58.
Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for articular cartilage repair and regeneration. However, the terminal hypertrophic differentiation of Ad-MSC-derived cartilage is a critical barrier during hyaline cartilage regeneration. In this study, we investigated the role of matrilin-3 in preventing Ad-MSC-derived chondrocyte hypertrophy in vitro and in an osteoarthritis (OA) destabilization of the medial meniscus (DMM) model. Methacrylated hyaluron (MAHA) (1%) was used to encapsulate and make scaffolds containing Ad-MSCs and matrilin-3. Subsequently, the encapsulated cells in the scaffolds were differentiated in chondrogenic medium (TGF-β, 1–14 days) and thyroid hormone hypertrophic medium (T3, 15–28 days). The presence of matrilin-3 with Ad-MSCs in the MAHA scaffold significantly increased the chondrogenic marker and decreased the hypertrophy marker mRNA and protein expression. Furthermore, matrilin-3 significantly modified the expression of TGF-β2, BMP-2, and BMP-4. Next, we prepared the OA model and transplanted Ad-MSCs primed with matrilin-3, either as a single-cell suspension or in spheroid form. Safranin-O staining and the OA score suggested that the regenerated cartilage morphology in the matrilin-3-primed Ad-MSC spheroids was similar to the positive control. Furthermore, matrilin-3-primed Ad-MSC spheroids prevented subchondral bone sclerosis in the mouse model. Here, we show that matrilin-3 plays a major role in modulating Ad-MSCs’ therapeutic effect on cartilage regeneration and hypertrophy suppression.  相似文献   
59.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
60.
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号