首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9769篇
  免费   547篇
  国内免费   25篇
电工技术   118篇
综合类   20篇
化学工业   2465篇
金属工艺   274篇
机械仪表   244篇
建筑科学   432篇
矿业工程   27篇
能源动力   574篇
轻工业   1365篇
水利工程   61篇
石油天然气   57篇
武器工业   2篇
无线电   635篇
一般工业技术   1561篇
冶金工业   818篇
原子能技术   126篇
自动化技术   1562篇
  2024年   33篇
  2023年   134篇
  2022年   285篇
  2021年   432篇
  2020年   298篇
  2019年   301篇
  2018年   460篇
  2017年   427篇
  2016年   444篇
  2015年   289篇
  2014年   456篇
  2013年   892篇
  2012年   630篇
  2011年   730篇
  2010年   587篇
  2009年   539篇
  2008年   461篇
  2007年   394篇
  2006年   286篇
  2005年   225篇
  2004年   168篇
  2003年   177篇
  2002年   173篇
  2001年   114篇
  2000年   94篇
  1999年   73篇
  1998年   216篇
  1997年   171篇
  1996年   113篇
  1995年   88篇
  1994年   78篇
  1993年   73篇
  1992年   35篇
  1991年   26篇
  1990年   27篇
  1989年   27篇
  1988年   26篇
  1987年   26篇
  1986年   25篇
  1985年   33篇
  1984年   20篇
  1983年   25篇
  1982年   20篇
  1981年   22篇
  1980年   16篇
  1979年   17篇
  1978年   18篇
  1977年   17篇
  1976年   38篇
  1971年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
The damage induced in 3C-SiC epilayers on a silicon wafer by 2.3-MeV Si ion irradiation for fluences of 1014, 1015, and 1016 cm−2, was studied by conventional and high-resolution transmission electron microscopy (TEM/HRTEM). The evolution of extended defects and lattice disorder is followed in both the 3C-SiC film and Si substrate as a function of ion fluence, with reference to previous FTIR spectroscopy data. The likelihood of athermal unfaulting of native stacking faults by point defect migration to the native stacking faults is discussed in relation to damage recovery. Threshold energy densities and irradiation doses for dislocation loop formation and amorphous phase transformation are deduced from the damage depth profile by nuclear collisions. The role of electronic excitations on the damage recovery at high fluence is also addressed for both SiC and Si.  相似文献   
152.
Artificial neural networks (ANNs) are designed and implemented to model the direct synthesis of dimethyl ether (DME) from syngas over a commercial catalyst system. The predictive power of the ANNs is assessed by comparison with the predictions of a lumped model parameterized to fit the same data used for ANN training. The ANN training converges much faster than the parameter estimation of the lumped model, and the predictions show a higher degree of accuracy under all conditions. Furthermore, the simulations show that the ANN predictions are also accurate even at some conditions beyond the validity range.  相似文献   
153.
Reusing wastewater from oil-related industries is becoming increasingly important, especially in water-stressed oil-producing countries. Before oily wastewater can be discharged or reused, it must be properly treated, e.g., by membrane-based processes like ultrafiltration. A major issue of the applied membranes is their high fouling propensity. This paper reports on mitigating fouling inside ready-to-use ultrafiltration hollow-fiber modules used in a polishing step in oil/water separation. For this purpose, in-situ polyzwitterionic hydrogel coating was applied. The membrane performance was tested with oil nano-emulsions using a mini-plant system. The main factors influencing fouling were systematically investigated using statistical design of experiments.  相似文献   
154.
A waste material called oil fly ash (OFA) was acid-functionalized, yielding f-OFA-COOH, which was then reacted with cerium oxide (CeO2) to make CeO2-functionalized OFA, or f-OFA-CeO2. Pristine OFA and f-OFA-CeO2 were used to make waterborne polyurethane (WBPU) dispersions, referred to as WBPU/OFA and WBPU/f-OFA-CeO2, respectively, with defined OFA and f-OFA-CeO2 content. All the dispersions were applied to mild steel as organic coatings to evaluate their protective properties, such as their hydrophobicity, adhesive strength and UV-shielding resistance. These protective properties varied based on the OFA and f-OFA-CeO2 content. The highest water contact angle, minimum water swelling and maximum adhesive strength were found using WBPU/f-OFA-CeO2-20 coating (using 2.00 wt% f-OFA-CeO2), which also showed the maximum ultraviolet (UV) absorption via UV–vis spectroscopy analysis. This UV shielding result also matched field test results, as that coating was found to exhibit the lowest UV degradation near a marine atmosphere, as shown by X-ray photoelectron spectroscopy (XPS) analysis. The least affected hydrophobicity was also recorded for the sample with the WBPU/f-OFA-CeO2-20 coating.  相似文献   
155.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   
156.
Isocyanate-based graphene oxide-containing polyimide foams were synthesized by a semi-prepolymer method. In this method, while the first solution containing pre-polymer was derived from pyromellitic dianhydride and excess polymethylene polyphenylene isocyanate (PM200), the second solution contains dianhydride derivatives, water, catalysts, surfactants, and graphene oxide. PIFs were prepared with 0%, 0.25%, 0.50%, 0.75%, and 1% graphene oxide by weight, respectively. PIFs exhibited a minimum side reaction and urea generation was not seen for all PIFs instead of imide bonding. The addition of graphene oxide (GO) leads to a more close-packed structure. Therefore, crosslinking density and thermal stability of graphene oxide-containing polyimide foams increased. Upon the addition of 1% GO, almost seven times higher compression strength was obtained compared to neat PIFs. Also, LOI values supported the theory that thermally stable and flame retardant PIFs can be synthesized via the isocyanate-based process with GO.  相似文献   
157.
The Nickel base Superalloys are the most famous complicated and useable of Superalloys to make hot zone components of the gas turbines. The complicated dimensional tolerances, specially at the root of the blade show importance of grinding processes at the production of blades root. The prediction of the effect of machining parameters on the soundness of component surface strengthening for reaching to a suitable surface finishing and avoiding from crack formation at the work part during machining operation often is not easy and feasible so needs to more industrial investigation.This research is about frame 5 blade designed by GE and made from Superalloy IN738LC has been investigated. The formation of a plastically deformed and heat affected zone during grinding of Superalloy IN738LC with a high depth of cut but slow work speed (creep feed grinding) was investigated. Parameters such as work speed, depth of cut and radial dressing speed have been considered as variables and their effects have been studied. During experimental performed, the voltage and current of motor measured and power and special energy calculated.Some samples heat-treated (of the 1176℃ for 1 hr under neutral argon gas and cooling rate of 15℃/min up to 537℃ and then air cooling) to study grains recrystallization. Other samples have been created from the roots of blades and then coated by Nickel to measure boundary layer micro-hardness. The results show that increasing work speed leads to increasing the use power. Increasing the depth of cut, by increasing material removal rate, and the radial dressing speed, by decreasing power, lead to decreasing special energy. The temperature created by grinding lead to decreasing plastic deformation and boundary layer formation. When the radial dressing speed changes from 1 to 0.6μm/rev and other parameters are kept unchanged the roughness of surface increases and the special energy decreases. Sufficient dressing is very essential in limiting the width of the molten zone to few micrometers. As a result, it was found that local melting at contact spots to be a rather common mechanism during grinding of superalloys, lead to so-called white layers which can easily be observed on metallographic cross sections.  相似文献   
158.
Polarization and impedance measurements were performed on steel in deaerated 5% HCl solution with and without Schiff base additives within the concentration range 1 × 10−4–5 × 10−3 mol/dm3. The Schiff base compounds used were salicylaldimine, R, N-(2-chlorophenyl)salicyaldimine, 2Cl-R, N-(3-chlorophenyl)salicyaldimine, 3Cl-R, and N-(4-chlorophenyl)salicyaldimine, 4Cl-R. It was found that when the concentration of the inhibitors were increased the inhibitor efficiencies, η, also increased with increasing surface coverage. The results indicated that the ortho-substituted (2Cl-R) compound had the highest inhibition efficiency. All the Schiff base additives studied obeyed the Langmuir isotherm.  相似文献   
159.
The use of graphite modified polymer films has been investigated, on stainless steel. Polythiophene and polypyrrole films have been synthesized electrochemically on stainless steel, and then very thin graphite layers were realized on polymer films. Since the graphite layer is not applicable as a top coat, polymeric top films were also electrosynthesized on graphite layers. Following this procedure, polypyrrole-graphite-polypyrrole and polythiophene-graphite-polythiophene coatings have been obtained on stainless steel. The corrosion behaviours of coated samples have been investigated in 0.1 M H2SO4 solution, by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves. The intercalation of graphite layer altered the performance and properties of coatings significantly. Especially, polypyrrole coating system was found to exhibit almost an excellent coating behaviour that hindered the attack of corrosive environment within 96 h exposure time. The EIS results of polypyrrole coating system were indicating to almost a perfect capacitive behaviour that the response was reflecting capacitive behaviour in a wide frequency region. This property was also examined with successive cyclic voltammograms in a potential range between 0.10 and 0.40 V (vs. Ag/AgCl). The charge densities involved in oxidation and reduction regions were determined for successive cycles and it was shown that coated sample was able to exhibit charge-discharge (i.e. oxidation and reduction) behaviour successfully, without any degradation.  相似文献   
160.
β-Carotene–FSS organic semiconductor/n-type Si structure has been characterized by current–voltage and capacitance–voltage methods. A deviation in IV characteristic of the diode is observed due to effect of series resistance and interfacial layer. Cheung's functions were used to calculate diode parameters. The ideality factor, series resistance and barrier height values of the diode are n = 1.77, Rs = 10.32 (10.39) kΩ and 0.78 eV. The obtained ideality factor suggests that Au/β-carotene–FSS/n-Si Schottky diode has a metal–SiO2 oxide layer plus organic layer–semiconductor (MIOS) configuration. The capacitance–voltage characterizations of Au/β-carotene–FSS/n-Si diode at different temperatures were performed. The capacitance of the diode changes with temperature. The barrier height and ideality factor obtained from CV curves are 0.67 eV and 1.68. The interface density properties of the diode are analyzed and the shape of the density distribution of the interface states is in the range of Ec −0.49 to −0.62 eV. It is evaluated that the FSS organic layer controls electrical charge transport properties of Au/β-carotene/n-Si diode by excluding effects of the β-carotene and SiO2 residual oxides on the hybrid diode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号