首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2339篇
  免费   71篇
  国内免费   23篇
电工技术   110篇
综合类   1篇
化学工业   526篇
金属工艺   69篇
机械仪表   44篇
建筑科学   37篇
能源动力   88篇
轻工业   180篇
水利工程   5篇
石油天然气   3篇
无线电   247篇
一般工业技术   418篇
冶金工业   417篇
原子能技术   78篇
自动化技术   210篇
  2023年   17篇
  2022年   51篇
  2021年   63篇
  2020年   31篇
  2019年   51篇
  2018年   57篇
  2017年   38篇
  2016年   56篇
  2015年   33篇
  2014年   62篇
  2013年   116篇
  2012年   75篇
  2011年   143篇
  2010年   82篇
  2009年   99篇
  2008年   98篇
  2007年   70篇
  2006年   65篇
  2005年   66篇
  2004年   62篇
  2003年   63篇
  2002年   59篇
  2001年   50篇
  2000年   48篇
  1999年   72篇
  1998年   174篇
  1997年   113篇
  1996年   88篇
  1995年   61篇
  1994年   47篇
  1993年   39篇
  1992年   35篇
  1991年   29篇
  1990年   24篇
  1989年   26篇
  1988年   24篇
  1987年   18篇
  1986年   18篇
  1985年   10篇
  1984年   16篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1977年   12篇
  1976年   12篇
  1975年   5篇
  1964年   3篇
排序方式: 共有2433条查询结果,搜索用时 31 毫秒
81.
Sequential anodic and cathodic pulse voltages were applied on anodised Al micro-electrodes in alkaline silicate electrolyte to explore the role of cathodic pulse in AC or bipolar plasma electrolytic oxidation (PEO) process. SEM observation was carried out to observe the sites of anodic and cathodic breakdown and their morphologies. The prior anodic breakdown accelerated the cathodic breakdown at ?50 V, and the acceleration was associated with the preferential cathodic breakdown at the anodic breakdown sites. However, the succeeding anodic breakdown during applying anodic pulse of 420 V for 2 ms was highly suppressed at the cathodic breakdown sites. This would randomise the anodic breakdown sites. Such role may contribute to the formation of rather uniform coatings on aluminium in this electrolyte without large discharge channels when larger cathodic current is applied with respect to the anodic current in AC PEO.  相似文献   
82.
Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE–CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.  相似文献   
83.
We observed crack generation and structural changes in electroless nickel–phosphorus (Ni–P) plating layers formed on copper-metalized silicon nitride substrates both during thermal cycling from ? 40 to 250 °C and during storage (not cycling) at 250 °C in order to investigate the effect of the phosphorus contents on crack generation and growth in the Ni–P platings. The used platings contained phosphorus at three different contents: 2.1 wt% [Ni–P(low)], 6.5 wt% [Ni–P(med)], and 10.9 wt% [Ni–P(high)]. The generation time and the amount of cracks were strongly dependent on their phosphorus contents. More cracks appeared after thermal cycling than after storage at 250 °C. In Ni–P(low), cracks were generated after 200 thermal cycles, whereas no cracks were observed even after 250 h of storage at 250 °C. In Ni–P(med) and Ni–P(high), both during thermal cycling and storage at 250 °C, cracks formed during or after crystallization of the amorphous layers. These results suggest that the primary factors affecting the generation of cracks in electroless Ni–P platings are crystallization of the Ni–P platings and repeated changes in thermal stress.  相似文献   
84.
We demonstrate that domain structure of single-layer graphene grown by ambient pressure chemical vapor deposition is strongly dependent on the crystallinity of the Cu catalyst. Low energy electron microscopy analysis reveals that graphene grown using a Cu foil gives small and mis-oriented graphene domains with a number of domain boundaries. On the other hand, no apparent domain boundaries are observed in graphene grown over a heteroepitaxial Cu(111) film deposited on sapphire due to unified orientation of graphene hexagons. The difference in the domain structures is correlated with the difference in the crystal plane and grain structure of the Cu metal. The graphene film grown on the heteroepitaxial Cu film exhibits much higher carrier mobility than that grown on the Cu foil.  相似文献   
85.
Boron and nitrogen-incorporated graphene thin films were grown on polycrystalline Ni substrates by thermal chemical vapor deposition using separate boron- and nitrogen-containing feedstocks. Boron and nitrogen atoms were incorporated in the film in almost equal amounts and the total content reached ∼28%. The film predominantly consisted of separate graphene and boron nitride domains. Carrier concentration in the graphene domains was estimated to be about 1 × 10−3 e/atom (3.8 × 1012 cm−2) from G band shift in Raman spectra.  相似文献   
86.
87.
The effect of α-substituent on the molecular motion and wetting behavior of poly{2-(perfluorobutyl)ethyl acrylate} [PFA-C4], poly{2-(perfluorobutyl)ethyl methacrylate} [PFMA-C4], poly{2-(perfluorobutyl)ethyl α-fluoroacrylate} [PFFA-C4], and poly{2-(perfluorobutyl)ethyl α-chloroacrylate} [PFClA-C4] films were characterized by dynamic contact angle measurement, lateral force microscopy (LFM), wide angle X-ray diffraction (WAXD), and X-ray photoelectron spectroscopy (XPS). WAXD of oriented PFClA-C4 fiber suggested the presence of rod-like chain due to the presence of bulky α-substituent. The glass transition temperature (Tg) of PFFA-C4 and PFClA-C4 were well above the room temperature. The water repellencies of PFFA-C4 and PFClA-C4 were as high as that of PFMA-C4 and their oil repellency of PFFA-C4 and PFClA-C4 was higher than the PFMA-C4. This result was originated from the low main chain mobility of PFFA-C4 and PFClA-C4 due to the presence of bulky α-substituents. The effect of molecular motion on water repellency was clarified by the results of temperature dependence studies of dynamic contact angle, LFM, and surface chemical composition measured by XPS.  相似文献   
88.
89.
Many efforts have been paid to realize the superior anodes for future Li batteries in either the dry Ar atmosphere or the dry air atmosphere. In this work, in order to clarify the effects of such atmospheres, the most reactive anodes of Li were freshly electrodeposited under the dry Ar or under the dry air condition. The Solid Electrolyte Interface (SEI) formed during the electrodeposition of Li anodes is revealed to have a different chemical composition and protective feature. The Li deposited under the dry air was revealed to have longer cycle life in the electrolyte than that deposited in Ar, even in the electrolyte containing ionic liquid. From the XPS results, the SEI formed in dry air is proved to be different from that formed in Ar gas atmospheres, that is, the SEI formed in dry air consists of Li2CO3 and Li nitride. In order to improve the performance of the anodes, the atmosphere for the initial preparation of the anode/electrolyte interface should be tuned.  相似文献   
90.
The dehydrogenation of methylcyclohexane (MCH) to toluene (TOL) for hydrogen production was theoretically and experimentally investigated in a bimodal catalytic membrane reactor (CMR), that combined Pt/Al2O3 catalysts with a hydrogen‐selective organosilica membrane prepared via sol‐gel processing using bis(triethoxysilyl) ethane (BTESE). Effects of operating conditions on the membrane reactor performance were systematically investigated, and the experimental results were in good agreement with those calculated by a simulation model with a fitted catalyst loading. With H2 extraction from the reaction stream to the permeate stream, MCH conversion at 250°C was significantly increased beyond the equilibrium conversion of 0.44–0.86. Because of the high H2 selectivity and permeance of BTESE‐derived membranes, a H2 flow with purity higher than 99.8% was obtained in the permeate stream, and the H2 recovery ratio reached 0.99 in a pressurized reactor. A system that combined the CMR with a fixed‐bed prereactor was proposed for MCH dehydrogenation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1628–1638, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号