首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2904篇
  免费   119篇
  国内免费   14篇
电工技术   215篇
综合类   10篇
化学工业   876篇
金属工艺   104篇
机械仪表   72篇
建筑科学   61篇
能源动力   161篇
轻工业   315篇
水利工程   2篇
石油天然气   4篇
无线电   143篇
一般工业技术   632篇
冶金工业   118篇
原子能技术   79篇
自动化技术   245篇
  2024年   5篇
  2023年   15篇
  2022年   32篇
  2021年   54篇
  2020年   34篇
  2019年   43篇
  2018年   57篇
  2017年   51篇
  2016年   60篇
  2015年   53篇
  2014年   96篇
  2013年   230篇
  2012年   135篇
  2011年   220篇
  2010年   165篇
  2009年   179篇
  2008年   187篇
  2007年   156篇
  2006年   141篇
  2005年   133篇
  2004年   115篇
  2003年   104篇
  2002年   102篇
  2001年   69篇
  2000年   54篇
  1999年   45篇
  1998年   38篇
  1997年   45篇
  1996年   39篇
  1995年   33篇
  1994年   52篇
  1993年   33篇
  1992年   28篇
  1991年   19篇
  1990年   20篇
  1989年   21篇
  1988年   20篇
  1987年   16篇
  1986年   11篇
  1985年   19篇
  1984年   11篇
  1983年   23篇
  1982年   15篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
排序方式: 共有3037条查询结果,搜索用时 31 毫秒
141.
A novel microstructured catalyst that consists of Cu/ZnO catalyst powders and ceramic fibers was successfully prepared using pulp fibers as a tentative matrix by a papermaking technique. As-prepared material, called a paper-structured catalyst, possessed porous microstructure with layered ceramic fiber networks (average pore size ca. 20 μm, porosity ca. 50%). In the process of methanol autothermal reforming (ATR) to produce hydrogen, paper-structured catalysts demonstrated both high methanol conversion and low concentration of undesirable carbon monoxide as compared with catalyst powders and pellets. The catalytic performance of paper-structured catalysts depended on the use of pulp fibers, which were added in the paper-forming process and finally removed by thermal treatment before ATR performance tests. Confocal laser scanning microscopy and mercury intrusion analysis suggested that the tentative pulp fiber matrix played a significant role in regulating the fiber-network microstructure inside paper composites. Various metallic filters with different average pore sizes, used as supports for Cu/ZnO catalysts, were subjected to ATR performance tests for elucidating the pore effects. The tests indicated that the pore sizes of catalyst support had critical effects on the catalytic efficiency: the maximum hydrogen production was achieved by metallic filters with an average pore size of 20 μm. These results suggested that the paper-specific microstructures contributed to form a suitable catalytic reaction environment, possibly by promoting efficient diffusion of heat and reactants. The paper-structured catalyst with a regular pore microstructure is expected to be a promising catalytic material to provide both practical utility and high efficiency in the catalytic gas-reforming process.  相似文献   
142.
Recently, a novel method of measuring the thermophysical properties, particularly thermal conductivity, of high-temperature molten materials using the electromagnetic levitation technique has been developed by Kobatake et al. [H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field, Appl. Phys. Lett. 90 (2007) 094102]; this method is based on a periodic laser-heating method, and entails the superimposing of a static magnetic field to suppress convection in an electromagnetically levitated droplet. In this work, to confirm the fact that a static magnetic field really suppresses convection in a molten silicon droplet in an electromagnetic levitator, numerical simulations of convection in the droplet and periodic laser heating in the presence of convection have been carried out. Here, the convections driven by buoyancy force, thermocapillary force due to the temperature dependence of the surface tension on the melt surface, and electromagnetic force in the droplet were considered. As a result, it was found that applying a static magnetic field of 4 T can suppress convection in a molten silicon droplet enough to measure the real thermal conductivity of molten silicon.  相似文献   
143.
144.
The authors have been studying Chemical Heat Pumps (CHP) from the viewpoints of energy saving and environmental impact. The CHP can store thermal energy in the form of chemical energy by an endothermic reaction, and release it at various temperature levels during heat demand periods by exo/endothermic reactions. The authors have proposed in an earlier study a novel chemical heat pump (CHP) system for environmentally-friendly effective utilization of thermal energy in drying as a chemical heat pump dryer (CHPD). In this exploratory study, we test the effectiveness of operating the proposed CHPDs experimentally. Basic experiments on the CHPDs such as hot dry air production for convective drying are performed on lab-scale CHPD apparatuses using gas-solid reactions in calcium oxide/calcium hydroxide reactant beds. The proposed CHPDs are found to produce hot air by CHP operation for drying. The temperature levels of the produced hot air and the reaction rates/conversions are as good as in the case of hot water supply system using basically same CHP operation. The cold heat for air dehumidification is also found to be generated/recovered by the same CHPD system. The generated heat amounts can be increased by changing the operating conditions although the heat recovery must be enhanced for practical application of CHPDs.  相似文献   
145.
The influence of environmental temperatures on the fatigue strength of compressed-hydrogen tanks for vehicles was investigated. The fatigue strength of Type-3 tanks was found to decrease in a low-temperature environment and increase in a high-temperature environment. The Type-3 tank has been subjected to autofrettage to improve fatigue strength. The investigation clarified that the effect of autofrettage changes according to the environmental temperature due to the difference between the coefficients of thermal expansion of carbon fiber reinforced plastic and aluminum alloy. This causes fatigue strength to change with changes in temperature. The Type-4 tank has a very long fatigue life and did not break after 45,000 cycles in a room-temperature or low-temperature environment. In a high-temperature environment, however, the tank broke in fewer than 45,000 cycles. The fatigue of carbon fiber reinforced plastic was promoted in the high-temperature environment, resulting in breakage of the tank. These results indicate that the fatigue strength of the tanks is influenced by the environmental temperature.  相似文献   
146.
Mercury oxidation by hydrochloric acid over the metal oxides supported by anatase type TiO2 catalysts, 1 wt.% MOx/TiO2 where M = V, Cr, Mn, Fe, Ni, Cu, and Mo, was investigated by the Hg0 oxidation and the NO reduction measurements both in the presence and absence of NH3. The catalysts were characterized by BET surface area measurement and Raman spectroscopy. The metal oxides added to the catalyst were observed to disperse well on the TiO2 surface. For all catalysts studied, the Hg0 oxidation by hydrochloric acid was confirmed to proceed. The activity of the catalysts was found to follow the trend MoO3 ~ V2O5 > Cr2O3 > Mn2O3 > Fe2O3 > CuO > NiO. The Hg0 oxidation activity of all catalysts was depressed considerably by adding NH3 to the reactant stream. This suggests that the metal oxide catalysts undergo the inhibition effect by NH3. The activity trend of the Hg0 oxidation in the presence of NH3 was different from that observed in its absence. A good correlation was found between the NO reduction and the Hg0 oxidation activities in the NH3 present condition. The catalyst having high NO reduction activity such as V2O5/TiO2 showed high Hg0 oxidation activity. The result obtained in this study suggests that the oxidation of Hg0 proceeds through the reaction mechanism, in which HCl competes for the active catalyst sites against NH3. NH3 adsorption may predominate over the adsorption of HCl in the presence of NH3.  相似文献   
147.
Tribological properties of a diamond-like carbon (DLC) coating with an adhesive tungsten-containing DLC (W-DLC) layer were investigated. The coatings were deposited onto AISI316L steel substrates and Si wafers using plasma enhanced chemical vapor deposition and tungsten co-sputtering of the metal target. Methane and argon gases were used as the precursor of the coatings. In this study, three types of coatings were evaluated: DLC/W-DLC on AISI316L (DLC-1), DLC/W-DLC on Si wafer (DLC-2), and DLC on Si wafer (DLC-3). The structural characterizations were performed by transmission electron microscopy and tapping mode atomic force microscopy. At the boundary between the W-DLC layer and the AISI316L substrate, microscopic decohesion or delamination was not observed. The surface roughness of the DLC-1 coating was greater than that of the DLC-2 coating. This feature was derived from the surface roughness of the initial surface of the AISI316L substrate. Friction tests were performed using a rotation-type ball-on-flat configuration tribometer. The observed friction of the DLC-1 coating was unstable compared with the DLC-2 or DLC-3 coatings. This was due to wear debris which had risen to the friction surface resulting in unstable friction on the DLC-1 coating. During the friction studies, the top DLC layer was removed from the adhesive W-DLC layer because the adhesive strength at this part was not enough. In order to achieve the low and stable friction of the DLC coating with the W-DLC layer on AISI316L, it is necessary to improve the smoothness of the surface and the adhesion between the DLC coating and the W-DLC layer.  相似文献   
148.
149.
纤维复合材料已经研究了数十年了。他们有着比传统材料,如钢材,优秀的多的力学性能。然而,由于相对较低的产量,梭织、编织与其3D纤维结构的复合材料被认为较难大量生产。因此,近年来,针织物在复合材料界获得了较高的关注,它的高度可塑性使针织复合材料可以直接生产制造成各种复杂形状的复合材料如管状、圆锥型等,使得材料的浪费可以降到了最低。本文使用了有表面处理和没有表面处理的纬编平针碳纤维制成复合材料。对两种复合材料的经向和纬向分别做了拉伸试验。结果显示:有表面处理的材料具有更好的拉伸性能,尤其是在wale方向上,有表面处理的复合材料比没有表面处理的复合材料的拉伸强度提高75.68%。  相似文献   
150.
This study aims to investigate the effects of a hydrothermal environment on the creep behavior of woven glass fiber reinforced plastics (GFRPs) and to propose a method for predicting their lifetime. Toward this end, experiments were carried out in air and deionized water at 40, 60, 80 and 95 °C. Static tensile tests of woven GFRP were conducted in air and in deionized water to evaluate its mechanical properties and to determine suitable experimental conditions for subsequent constant tensile load tests. The mechanical properties of the woven GFRP decreased with an increase in temperature and with water immersion. Constant tensile load tests were also conducted in air and in deionized water to investigate the creep behavior and fracture time. The fracture time decreased with an increase in stress and water temperature and demonstrated the possibility of a threshold stress for fracturing. In addition, the fracture time during each constant tensile load test was predicted using a modified Reiner–Weissenberg (R-W) criterion, which is a failure criterion for linear viscoelastic materials based on the accumulation of dissolved energy within the GFRP. In this study, the R-W criterion was modified to consider the effects of degradation and its acceleration, which are due to the applied stress and immersion in a solution. The predicted results were in good agreement with the experimental data when considering the effects of hydrothermal aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号