Information Systems Frontiers - System logs that trace system states and record valuable events comprise a significant component of any computer system in our daily life. Each log contains... 相似文献
This paper studies the stability analysis problem for time-varying delay systems. An appropriate Lyapunov-Krasovskii functional (LKF) is constructed where its derivative is a quadratic polynomial function of the delay. A novel negative condition of the mentioned quadratic function with two variable parameters is developed to ensure that the LKF derivative is negative, reducing conservatism on some similar results. Besides, an extended version of Bessel-Legendre inequality is introduced to be employed in the stability analysis of time-varying delay systems. Then, some stability criteria with less conservatism are derived for two kinds of the time-varying delay. Finally, the effectiveness of the proposed stability criteria is demonstrated through three examples.
We theoretically demonstrate that at certain frequencies two-dimensional dielectric photonic crystals (PCs) may be regarded as either epsilon-near-zero or mu-near-zero materials. We show that the transmission through a slab of such materials upon normal incidence is normally non-unity and decays with slab thickness. However, when the incident angle increases slightly, the transmittance experiences a dramatic increase due to the Brewster effect. The combination of the tunneling and resonance effects makes such materials good candidates for almost perfect bending waveguides and cloaking in waveguides. The zero index also enables applications of focusing and directive emission. At last, the distinction between the single-zero and double-zero media is discussed. In all of the above results, the numerical simulations perfectly match with theoretical predictions from the effective medium analysis. 相似文献
All‐solution processed, high‐performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal–insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC‐based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC‐based and solution‐processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low‐cost and high‐performance electronic skin or wearable devices. 相似文献