首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   144篇
电工技术   3篇
化学工业   216篇
金属工艺   14篇
机械仪表   67篇
建筑科学   3篇
矿业工程   1篇
能源动力   14篇
轻工业   142篇
水利工程   1篇
无线电   128篇
一般工业技术   210篇
冶金工业   12篇
原子能技术   7篇
自动化技术   46篇
  2024年   2篇
  2023年   27篇
  2022年   19篇
  2021年   47篇
  2020年   37篇
  2019年   47篇
  2018年   46篇
  2017年   57篇
  2016年   60篇
  2015年   43篇
  2014年   66篇
  2013年   45篇
  2012年   44篇
  2011年   50篇
  2010年   38篇
  2009年   36篇
  2008年   37篇
  2007年   21篇
  2006年   17篇
  2005年   18篇
  2004年   16篇
  2003年   13篇
  2002年   19篇
  2001年   11篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1976年   2篇
排序方式: 共有864条查询结果,搜索用时 15 毫秒
21.
Graphene has been gradually studied as a high‐frequency transmission line material owing to high carrier mobility with frequency independence up to a few THz. However, the graphene‐based transmission lines have poor conductivity due to their low carrier concentration. Here, it is observed that the radio frequency (RF) transmission performance could be severely hampered by the defect‐induced scattering, even though the carrier concentration is increased. As a possible solution, the deposition of the amorphous carbon on the graphene is studied in the high‐frequency region up to 110 GHz. The DC resistance is reduced by as much as 60%, and the RF transmission property is also enhanced by 3 dB. Also, the amorphous carbon covered graphene shows stable performance under a harsh environment. These results prove that the carrier concentration control is an effective and a facile method to improve the transmission performance of graphene. It opens up the possibilities of using graphene as interconnects in the ultrahigh‐frequency region.  相似文献   
22.
23.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
24.
Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene‐based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high‐quality contact formation, precise alignment of micrometer‐scale patterns, and control of interfacial‐adhesion/local‐resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned‐graphene transfers at desired locations is presented. Using the thermal‐expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a “heating and cooling” process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and superhydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene‐based stretchable sensors, actuators, light‐emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.  相似文献   
25.
This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature‐controllable microelectrode array with a smart polymer film, poly(N‐isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2‐micrometer‐thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm×16 mm to 40°C within 1 second. To relay the stimulus‐response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti‐6‐(2, 4‐dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns.  相似文献   
26.
A direct printing method for fabricating devices by using metal oxide transfer layers instead of conventional transfer media such as polydimethylsiloxane is presented. Metal oxides are not damaged by organic solvents; therefore, electrodes with gaps less than 2 μm can be defined on a metal oxide transfer layer through photolithography. In order to determine a suitable metal oxide for use as transfer layer, the surface energies of various metal oxides are measured, and Au layers deposited on these oxides are transferred onto polyvinylphenol (PVP). To verify the feasibility of our approach, Au source–drain electrodes on transfer layers and Si nanowires (NWs) addressed by the dielectrophoretic (DEP) alignment process are transferred onto rigid and flexible PVP‐coated substrates. Based on transfer test and DEP process, Al2O3 is determined to be the best transfer layer. Finally, Si NWs field effect transistors (FETs) are fabricated on a rigid Si substrate and a flexible polyimide film. As the channel length decreases from 3.442 to 1.767 μm, the mobility of FET on the Si substrate increases from 127.61 ± 37.64 to 181.60 ± 23.73 cm2 V?1 s?1. Furthermore, the flexible Si NWs FETs fabricated through this process show enhanced electrical properties with an increasing number of bending cycles.  相似文献   
27.
This paper presents a generalized eigen-combining algorithm for an adaptive array system that provides a diversity gain in angular spread, and a maximum signal-to-interference ratio (SIR) in the presence of strong interference. The proposed technique generates the maximum ratio of signal components distributed in the spatial channel subspace using channel bases that span the signal subspace and nullify the interference. Through extensive computer simulations, it is shown that the proposed algorithm represents a breakthrough in preventing performance saturation caused by strong co-channel interference.  相似文献   
28.
Herein, the exploration of natural plant‐based “spores” for the encapsulation of macromolecules as a drug delivery platform is reported. Benefits of encapsulation with natural “spores” include highly uniform size distribution and materials encapsulation by relatively economical and simple versatile methods. The natural spores possess unique micromeritic properties and an inner cavity for significant macromolecule loading with retention of therapeutic spore constituents. In addition, these natural spores can be used as advanced materials to encapsulate a wide variety of pharmaceutical drugs, chemicals, cosmetics, and food supplements. Here, for the first time a strategy to utilize natural spores as advanced materials is developed to encapsulate macromolecules by three different microencapsulation techniques including passive, compression, and vacuum loading. The natural spore formulations developed by these techniques are extensively characterized with respect to size uniformity, shape, encapsulation efficiency, and localization of macromolecules in the spores. In vitro release profiles of developed spore formulations in simulated gastric and intestinal fluids have also been studied, and alginate coatings to tune the release profile using vacuum‐loaded spores have been explored. These results provide the basis for further exploration into the encapsulation of a wide range of therapeutic molecules in natural plant spores.  相似文献   
29.
Autotrophic growth of Porphyridium cruentum under 18:12 h and 12:12 h light:dark cycles showed the maximum cell concentration of 2.1 g-dry wt./L, whereas the specific growth rate, 0.042 (1/h), at 18:6 h is faster than that of 12:12 h, 0.031 (1/h), respectively. The highest lipid accumulation level, 19.3 (%, w/w), was achieved at 12:12 h cycle. Under dark cultivation condition with 10 g/L of glucose, the lipid accumulation in the cell was 10.9 (%, w/w), whereas the heterotrophic growth with glycerol as the carbon resource showed low level of cell concentration and lipid production, compared to that of glucose. The glucose was decided to be a suitable carbon resource for the heterotrophic growth of P. cruentum. The lipids from P. cruentum seemed be feasible for biodiesel production, because over 30% of the lipid was C16–C18:1. The cultivation time and temperature were important factors to increase the maximum cell concentration. Extending the cultivation time helps maintain the maximum cell concentration, and higher lipid accumulation was achieved at 25 °C, compared to 35 °C. The fed-batch cultures showed that, under the light condition, the specific production rate was slightly decreased to 0.4% lipid/g-dry wt./day at the later stage, whereas, under the dark condition, the specific production rate was maintained to be a maximum value of 1.1% lipid/g-dry wt./day, even in the later stage of cultivation. The results indicate that the heterotrophic or 12:12 h cyclic mixotrophic growth of P. cruentum could be used for the production of biodiesel in long-term fed-batch cultivation of P. cruentum.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号