首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   5篇
  国内免费   5篇
电工技术   1篇
综合类   1篇
化学工业   41篇
金属工艺   8篇
机械仪表   4篇
建筑科学   5篇
能源动力   9篇
轻工业   31篇
水利工程   2篇
无线电   26篇
一般工业技术   52篇
冶金工业   6篇
自动化技术   60篇
  2022年   11篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   17篇
  2017年   12篇
  2016年   13篇
  2015年   11篇
  2014年   8篇
  2013年   20篇
  2012年   11篇
  2011年   17篇
  2010年   9篇
  2009年   12篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
41.
The objective of the present work is to predict the formation of chevron crack in copper wire drawing process. The first part of this paper is to determine the chevron crack formation initiated by a central burst inside the wire material using experimental tests. These results are compared with results from a series of numerical simulations using the Cockcroft?CLatham fracture criterion. The second part of this work concerns the determination of a curve that divides the chevron and safe zones for a better wire drawing process. The conditions of central burst defects formation along the wire axis depend on drawing parameters and friction coefficient between the die and the wire. The friction coefficient is defined as a linear function of temperature rise which is measured close to the wire-die interface. The obtained results show that the friction coefficient depending on temperature rise during wire drawing has an impact on the damage of copper wire.  相似文献   
42.
The historical development, current status and future prospects of chlor-alkali electrolysis with oxygen depolarized cathodes (ODCs) are summarized. Over the last decades, membrane chlor-alkali technology has been optimized to such an extent that no substantial reduction of the energy demand can be expected from further process modifications. However, replacement of the hydrogen evolving cathodes in the classical membrane cells by ODCs allows for reduction of the cell voltage and correspondingly the energy consumption of up to 30%. This replacement requires the development of appropriate cathode materials and novel electrolysis cell designs. Due to their superior long-term stability, ODCs based on silver catalysts are very promising for oxygen reduction in concentrated NaOH solutions. Finite-gap falling film cells appear to be the technically most mature design among the several ODC electrolysis cells that have been investigated.
Thomas TurekEmail:
  相似文献   
43.
In this paper, the hole drilling (HD) and the cold expansion (CE) processes, which were used as a technique for crack repair, were investigated in order to estimate the beneficial effects on fatigue crack initiation (FCI). The FCI life is defined as the number of cycles to initiate a new crack of 0.2 mm on the surface of the specimen. Three hole radii and three degrees of cold expansion (DCE%) values were tested after a crack propagation period. Crack retardation after the CE process was observed. This phenomenon is due to two mechanisms: retardation owing to both geometric and mechanical effects, which is produced by the stress concentration at the drilled hole, and the large strain‐induced compressive residual stresses around the hole. In this report, the influence of the loading conditions was studied. For high values of the stress intensity factor range ΔKρ around the hole (based on the pseudo crack length a + ρ), the number of cycles corresponding to crack initiation Ni is low. At the edge of the hole, the maximum stress range can be approximated by the following formula: Δσmax = 2ΔKρ /√πρ , where ρ is the hole radius and ΔKρ is the related stress intensity factor range.The FCI life extension, defined by the number of cycles corresponding to crack re‐initiation Ni , is related to the relative maximum stress range ratio Rσ = [(Δσmax )/(Δσmax )th ] where (Δσmax )th is the value of the threshold maximum stress range obtained when Ni = 2 × 106 cycles. The relationship between Ni and Rσ may be written as a power function.  相似文献   
44.
45.
Transition metal dichalcogenides (TMDs) display a rich variety of instabilities such as spin and charge orders, Ising superconductivity, and topological properties. Their physical properties can be controlled by doping in electric double-layer field-effect transistors (FET). However, for the case of single layer NbSe2, FET doping is limited to ≈ 1 × 1014 cm−2, while a somewhat larger charge injection can be obtained via deposition of K atoms. Here, by performing angle-resolved photoemission spectroscopy, scanning tunneling microscopy, quasiparticle interference measurements, and first-principles calculations it is shown that a misfit compound formed by sandwiching NbSe2 and LaSe layers behaves as a NbSe2 single layer with a rigid doping of 0.55–0.6 electrons per Nb atom or ≈ 6 × 1014 cm−2. Due to this huge doping, the 3 × 3 charge density wave is replaced by a 2 × 2 order with very short coherence length. As a tremendous number of different misfit compounds can be obtained by sandwiching TMDs layers with rock salt or other layers, this work paves the way to the exploration of heavily doped 2D TMDs over an unprecedented wide range of doping.  相似文献   
46.
47.
Industrial magnesia-spinel bricks destined for thermal shock applications often show more flexibility and improved crack growth resistance. Components from the spinel structure group are usually added to promote microcracking coming from thermal expansion mismatch. This leads to the development of toughening mechanisms that are very effective in improving the crack propagation resistance.Magnesia-hercynite composites were investigated in order to highlight their fracture process, with regard to their microstructure, by using Digital Image Correlation (DIC). The direct measurement of displacement fields between digital images of the reference state and the deformed one has provided valuable information on material deformation during loading. The aim of this work was to investigate the fracture behaviour of refractories through the coupling of the Wedge Splitting Test (WST) and DIC. By using a refined DIC process transformation taking into account a discontinuity of displacement, called 2P-DIC, a more effective characterisation of the fracture behaviour was achieved.  相似文献   
48.
New measures for robustness are proposed for linear multivariable control systems. A new theorem is presented to account for the controllability of systems that contain an integrating element, in the presence of additive uncertainties. The theorem leads to the definition of a sufficient condition for robust integral controllability: robustness margin (RM). The ratio of robustness margins for competing control or processs structures can be used to discriminate between these structures. These measures are useful, especially in design stages, since their calculation depends only on steady state information. Applications to several published distillation systems show the merits of these robustness measures.  相似文献   
49.
50.
Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke–Johnson, and spin–orbit coupling (GGA–SOC) exchange–correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号