首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   72篇
  国内免费   15篇
电工技术   10篇
综合类   6篇
化学工业   228篇
金属工艺   24篇
机械仪表   30篇
建筑科学   18篇
能源动力   54篇
轻工业   158篇
水利工程   13篇
石油天然气   5篇
无线电   122篇
一般工业技术   196篇
冶金工业   32篇
原子能技术   4篇
自动化技术   164篇
  2024年   3篇
  2023年   40篇
  2022年   77篇
  2021年   117篇
  2020年   72篇
  2019年   63篇
  2018年   78篇
  2017年   59篇
  2016年   73篇
  2015年   36篇
  2014年   54篇
  2013年   66篇
  2012年   50篇
  2011年   55篇
  2010年   41篇
  2009年   24篇
  2008年   23篇
  2007年   21篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   6篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   8篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   5篇
  1975年   1篇
排序方式: 共有1064条查询结果,搜索用时 15 毫秒
101.
A new AgO.CuO.WO3/rGO nanocomposite was designed for the investigation of the degradation ability of the hybrid material under visible light irradiation. The AgO, CuO, WO3 NPs, and AgO.CuO.WO3 hetero-metallic oxides were fabricated via the chemical co-precipitation method. The crystallite sizes and phase analyses were investigated by recording X-ray diffraction patterns. The crystallite sizes of three metal oxides in the AgO.CuO.WO3 hetero metal oxide were 16.7, 15.9, and 16.9 nm, respectively. The FESEM images at various magnifications were probed to study the morphology of synthesized materials. The micrographs of hetero-metallic oxides AgO.CuO.WO3 exposed that three metal oxides merged like small particles and gives a large bulbous appearance. EDX analyses confirmed the formation of required materials with high purity. FTIR data was in agreement with the literature which facilitated to ensure the purity of synthesized samples. The optical bandgap energy was calculated via the Tauc plot indicating that the blend of three metal oxides generated a new energy level in the electronic structure is suitable for photocatalysis in the presence of visible light. The bandgap energy of hetero metallic oxides was 1.25 eV which is less than individual metal oxides signifying the tuning of the bandgap. The incorporation of rGO in AgO.CuO.WO3 hetero-metallic oxides gives a new photocatalyst for optimum photodegradation of methylene blue in minimum time. The percentage degradation via AgO.CuO.WO3 was 87.20% in 70 min while the percentage degradation via AgO.CuO.WO3/rGO recorded by photocatalytic experiment was 95% in 40 min. The photocatalysis data revealed that AgO.CuO.WO3 hetero-metallic oxides-rGO nanocomposite ensured a strong potential to uptake organic dyes from water by promoting redox reactions during photocatalysis in the minimum time limit.  相似文献   
102.
The drive of this study is to develop a robust system. A method to classify brain magnetic resonance imaging (MRI) image into brain-related disease groups and tumor types has been proposed. The proposed method employed Gabor texture, statistical features, and support vector machine. Brain MRI images have been classified into normal, cerebrovascular, degenerative, inflammatory, and neoplastic. The proposed system has been trained on a complete dataset of Brain Atlas-Harvard Medical School. Further, to achieve robustness, a dataset developed locally has been used. Extraordinary results on different orientations, sequences of both of these datasets as per accuracy (up to 99.6%), sensitivity (up to 100%), specificity (up to 100%), precision (up to 100%), and AUC value (up to 1.0) have been achieved. The tumorous slices are further classified into primary or secondary tumor as well as their further types as glioma, sarcoma, meningioma, bronchogenic carcinoma, and adenocarcinoma, which could not be possible to determine without biopsy, otherwise.  相似文献   
103.
Nonionic surfactants are highly stable and cost-effective and receiving acceptance for applications in many diverse fields including drug delivery, due to their distinctive properties. Here, we report on the synthesis and characterization of sulfanilamide-based nonionic surfactants for nanoscale vesicular drug loading applications. Nonionic surfactants were synthesized through alkylation of sulfanilamide with alkyl halides that possessed diverse degrees of lipophilicity. They were explored for their nanovesicular drug loading with Cefixime as a hydrophobic model drug. Drug-loaded nanovesicles were characterized for surface morphologies, size, size distribution, surface charge, and drug loading efficiency using atomic force microscopy (AFM), dynamic light scattering (DLS), and UV–visible spectrophotometry. All of the synthesized nonionic surfactants revealed their CMC values in 0.055–0.035 mM range depending upon the lipophilic chain length of surfactants. They caused a decreased hemoglobin release and low toxicity against cell culture. They self-assembled and loaded an increased amount of drug in the form of nanorange spherical shape niosomal vesicles. Results of the current study verify these synthesized nonionic surfactants are hemocompatible, nontoxic, and capable of self-assembling into nanorange niosomal vesicles. These niosomal vesicles can be suggested as safe and highly efficient nanocarriers for hydrophobic drug loading and delivery.  相似文献   
104.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
105.
106.
107.
Vitamin D lost its functionality during processing and storage, thus, encapsulation with proteins is desirable to preserve bioactivity. The aim of the current study was to develop encapsulated vitamin D fortified mayonnaise (VDFM) using whey protein isolates (WPI) and soy protein isolates (SPI) as encapsulating materials in three different formulations, that is, 10% WPI, 10% SPI, and 5/5% WPI/SPI. Increased shear stress decreased the apparent viscosity along with significant effects on the loss modulus of VDFM. WPI encapsulates showed better results as compared to SPI. WPI based VDFM (M1) depicted the best results in terms of size and dispersion uniformity of oil droplets. Hue angle and total change differed significantly among treatments. The highest value for overall acceptability was acquired by M3 (5:5%WPI:SPI-encapsulates) thus proceed for in vivo trials. Serum vitamin D level was significantly higher in the encapsulated VDFM rat group (58.14 ± 6.29 nmol/L) than the control (37.80 ± 4.98 nmol/L). Conclusively, WPI and SPI encapsulates have the potential to improve the stability and bioavailability of vitamin D.  相似文献   
108.
Wireless Networks - This research article presents an innovative approach based on analog network coding (ANC) in conjunction with space time block coding (STBC) which is termed as space time...  相似文献   
109.
The main aim of the current paper is to investigate the mass and heat transportation of a Casson nanomaterial generated by the inclination of the surface. The magnetic field effect along with suction or injection are considered. The working nanomaterial is taken into consideration based on the concept of the Buongiorno nanofluid theory, which explores the thermal efficiencies of liquid flows under movement of Brownian and thermophoretic phenomena. The emergent system of differential expressions is converted to dimensionless form with the help of the appropriate transformations. This system is numerically executed by the implementation of Keller–Box and Newton's schemes. A good agreement of results can be found with the previous data in a limiting approach. The behavior of the physical quantities under concern, including energy exchange, Sherwood number, and wall shear stress are portrayed through graphs and in tabular form. The Nusselt number and Sherwood number are found to diminish against the altered magnitudes of Brownian motion and the inclination parameter. Moreover, the velocity profile decreases with the growth of the inclination effect. In the same vein, the buoyancy force and solutal buoyancy effects show a direct relation with the velocity field. The outcomes have promising technological uses in liquid‐based systems related to stretchable constituents.  相似文献   
110.
In miscible displacements encountered in enhanced oil recovery processes, the unfavorable viscosity contrast between injected solvent and oil usually leads to viscous fingering (VF), a hydrodynamic instability which may result in a lower sweep efficiency and oil recovery. This phenomenon can be observed in a wide range of flows in subsurface porous media. This study examined a simple cyclic time-dependent displacement rate and its effects on the onset and longer development of VF. It is found that such varying displacement rate can either stabilize or destabilize VF, depending on the cycle period, amplitude, and displacement scenarios. The most important mechanism is that such time-dependent rate can effectively change the competition between convection (destabilizing effect) and dispersion (stabilizing effect). This is different from the widely used constant injection rate where the flow instability is actually determined by the Peclet number and mobility contrast for a given scenario. This study therefore provided a new aspect to control VF, either enhance or reduce, with low additional costs. It is therefore both scientifically and practically important for a wide range of flows in subsurface porous media. © 2017 American Institute of Chemical Engineers AIChE J, 65: 360–371, 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号