首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
化学工业   3篇
金属工艺   2篇
机械仪表   1篇
建筑科学   2篇
轻工业   1篇
一般工业技术   7篇
自动化技术   1篇
  2020年   3篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
排序方式: 共有17条查询结果,搜索用时 281 毫秒
11.
The corrosion inhibition of AA2024-T4 in 3.5% NaCl solution by 8-hydroxylquinoline (8-HQ) was investigated by potentiodynamic polarisation (PDP), electrochemical impedance spectroscopy and dynamic electrochemical impedance spectroscopy. Experimental results were supported with scanning electron microscopy (SEM), atomic force microscopy and Fourier transform-infrared (FTIR) spectroscopy analysis. It was found that 8-HQ molecules adsorbed on the alloy surface and protected it against corrosion. SEM, energy dispersive spectroscopy, and FTIR results confirm the adsorption of 8-HQ molecules on AA2024-T4. The inhibition efficiency of 8-HQ is found to increase with increase in concentration and the highest concentration studied (0.05 M) offered corrosion inhibition efficiency of 84%. PDP results show that 8-HQ acts as mixed type inhibitor in the studied medium.  相似文献   
12.
13.
14.
Core-shell microgel (CSMG) nanoparticles, also referred to as core-cross-linked star (CCS) polymers, can be envisaged as permanently cross-linked block copolymer micelles and, as such, afford novel opportunities for chemical functionalization, templating, and encapsulation. In this study, we explore the behavior of CSMG nanoparticles comprising a poly(methyl methacrylate) (PMMA) shell in molten PMMA thin films. Because of the autophobicity between the densely packed, short PMMA arms of the CSMG shell and the long PMMA chains in the matrix, the nanoparticles migrate to the film surface. They cannot, however, break through the surface because of the inherently high surface energy of PMMA. Similar thermal treatment of CSMG-containing PMMA thin films with a polystyrene (PS) capping layer replaces surface energy at the PMMA/air interface by interfacial energy at the PMMA/PS interface, which reduces the energy barrier by an order of magnitude, thereby permitting the nanoparticles to emerge out of the PMMA bulk. This nanoscale process is reversible and can be captured at intermediate degrees of completion. Moreover, it is fundamentally general and can be exploited as an alternative means by which to reversibly pattern or functionalize polymer surfaces for applications requiring responsive nanolithography.  相似文献   
15.
Northern Cyprus (NC) is at the cutting edge of complete salinization of freshwater resources. In spite of some precautions taken to reduce seawater intrusion of the groundwater resources, the contamination had increased up to brackish water attribute in the coastal aquifers. The Integrated Water Resources Planning and Management (IWRM) system was introduced as a powerful tool in order to identify water consumption in the country. To perform the future forecast, it is necessary to determine the water needs at the present time; thus, this research analysed the present and historical water budget of the country under normal and drought conditions. The calculations were extended to future forecasting of water needs considering different scenarios for the country. The results obtained were grouped into monthly, sector wise and regional consumptions. The water extractions are linked to the available water amounts, and the water deficiencies in the aquifers were revealed. A rough economical analysis of new water resources was also performed. Conclusions and recommendations are provided to guide scientists, engineers and stakeholders for the future studies and evaluations.  相似文献   
16.
Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.  相似文献   
17.
In this paper, we present a comprehensive technique for accurate determination of three-dimensional (3D) dynamic force measurement characteristics of multi-axis dynamometers within a broad range of frequencies. Many research and development efforts in machining science and technology rely upon being able to make precise measurements of machining forces. In micromachining and high-speed machining, cutting forces include components at frequencies significantly higher than the bandwidth of force dynamometers. Further, the machining forces are three-dimensional in nature. This paper presents a new experimental technique to determine the three-dimensional force-measurement characteristics of multi-axis dynamometers. A custom-designed artifact is used to facilitate applying impulsive forces to the dynamometer at different positions in three dimensions. Repeatable and high-quality impulse excitations are provided from a novel impact excitation system with a bandwidth above 25 kHz. The force measurement characteristics are presented within 25 kHz bandwidth using 3 × 3 force-to-force frequency response functions (F2F-FRFs), which capture both direct and dynamic cross-talk components to enable fully three-dimensional characterization. The presented approach is used to characterize the dynamic behavior of a three-axis miniature dynamometer. The effects of force-application position, artifact geometry, and dynamometer-fixturing conditions are explored. Moreover, the relationship between the force-measurement characteristics and structural dynamics of the dynamometer assembly is analyzed. It is concluded that the presented technique is effective in determining the force-measurement characteristics of multi-axis dynamometers. The changes in dynamometer assembly that affect its structural dynamics, including artifact (workpiece) geometry and especially the fixturing conditions, were seen to have a significant effect on force-measurement characteristics. Furthermore, the force-measurement characteristics were seen to change substantially with the force-application position. The presented technique provides a foundation for future compensation efforts to enable measuring forces within a broad range of frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号