首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   6篇
电工技术   2篇
综合类   1篇
化学工业   26篇
金属工艺   4篇
机械仪表   5篇
建筑科学   3篇
能源动力   1篇
轻工业   11篇
水利工程   3篇
无线电   2篇
一般工业技术   43篇
冶金工业   14篇
自动化技术   10篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   10篇
  2012年   3篇
  2011年   11篇
  2010年   8篇
  2009年   12篇
  2008年   5篇
  2007年   6篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
81.
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.  相似文献   
82.
The preparation of silica nanoparticles through solid‐fed flame synthesis was investigated experimentally and theoretically. Monodispersed submicrometer‐ and micrometer‐sized silica powders were selected as solid precursors for feeding into a flame reactor. The effects of flame temperature, residence time, and precursor particle size were investigated systematically. Silica nanoparticles were formed by the nucleation, coagulation, and surface growth of the generated silica vapors due to the solid precursor evaporation. Numerical modeling was conducted to describe the mechanism of nanoparticle formation. Evaporation of the initial silica particles was considered in the modeling, accounting for its size evolution. Simultaneous mass transfer modeling due to the silica evaporation was solved in combination with a general dynamics equation solution. The modeling and experimental results were in agreement. Both results showed that the methane flow rate, carrier gas flow rate, and initial particle size influenced the effectiveness of nanoparticle formation in solid‐fed flame synthesis. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
83.
The isothermal oxidation behavior of Cr2AlC coatings on alumina substrates was investigated in the temperature range of 1230 to 1410 °C. The structure, surface morphology, microstructure evolution and chemistry of the reaction products have been investigated. In the investigated temperature range, the Cr2AlC films form a dense continuous oxide scale consisting of α-Al2O3 on Cr carbides. The oxidation rates determined by thermo gravimetric analysis (TGA) were parabolic, indicating that diffusion through the scale is the rate limiting mechanism. The activation energy for oxidation was determined to be 348 kJ mol− 1 and the parabolic rate constant at 1230 °C was 7.1 × 10− 10 kg2 m− 4 s− 1. Hence, the oxidation behavior is comparable to NiAl in the temperature range and time intervals investigated. With increasing oxidation time voids form at the interface between oxide and Cr carbides and the amount of Cr7C3 increases at the expense of Cr3C2. Based on our thermodynamic calculations the oxygen partial pressure below the oxide scale increases as Al is depleted and Cr carbides oxidize, resulting in CO gas- and Cr2O3-formation. The formation of gas may together with the depletion of Al and Cr lead to the significant void formation observed in the Cr carbide interlayer. Observation of both Cr carbide precipitates and the formation of (Al,Cr)2O3 solid solution support this notion. For comparison bulk Cr2AlC was oxidized. It is argued that the absence of pores in oxidized bulk Cr2AlC is due to the considerably larger amount of Al available.  相似文献   
84.
A numerical study has been carried out by means of the Green's function method to explore possible performance improvements of a simple grated waveguide (GWg) by the variations of its grated structure. It is shown that a GWg featuring symmetric two-sided grated structure of 16 teeth with a 60?nm groove depth and having a symmetric refractive index profile with a relatively large contrast between the grated and ungrated layers is capable of delivering largely improved device performance compared to that achieved previously with a one-sided grating of 40?nm groove depth and asymmetric index profile. The improvement is characterized by a remarkable 8-fold and 15-fold increase in the group index and the maximum field intensity, respectively, at the first resonance wavelength above the upper band edge (shorter wavelength), while relatively less improvement is found at the first resonance wavelength below the lower band edge (longer wavelength). It is shown that more than 20% further improvement can be obtained by an appropriate shifting of the two innermost adjacent grating teeth in the case of the 40?nm groove depth. Apart from that, the result also reveals an interesting and remarkable correlation between the variations of the group index and the confined energy.  相似文献   
85.
The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al–Cu, Al–Cu–Fe–Mn, and Al–Cu–Fe–Si–Mn enriched regions. In particular, the presence of Al2CuMg (S-phase) and the CuAl2 (θ′) phases indicated precipitation strengthening in the aluminum alloy.  相似文献   
86.
Iskandar F  Iwaki T  Toda T  Okuyama K 《Nano letters》2005,5(7):1525-1528
The preparation of a three-dimensionally (3D) ordered macroporous iron-platinum (FePt) film derived from monodisperse FePt nanoparticles (approximately 3 nm in diameter) and polystyrene latex particles (254 nm in diameter) is described. The prepared film has a hexagonally ordered porous structure and coercivity up to 10 kOe after annealing at a temperature of 600 degrees C. We also found that size of FePt particles was maintained at around 3 nm, even after annealing at a temperature of 600 degrees C.  相似文献   
87.

Rare-earth oxides microparticles doped tellurite-based glass have been studied extensively to improve the capability of optoelectronic devices. We report a detailed comparison between two sets of glass series containing samarium microparticles and nanoparticles denoted as ZBTSm-MPs and ZBTSm-NPs, respectively. The two sets of glass have been successfully fabricated via melt-quenching technique with chemical formula {[(TeO2)0.70 (B2O3)0.30]0.7 (ZnO)0.3}1?y (Sm2O3 (MPs/NPs))y with y?=?0.005, 0.01, 0.02, 0.03, 0.04 and 0.05 mol fraction. The TEM analysis confirmed the existence and formation of nanoparticles in ZBTSm-NPs glasses. The density of ZBTSm-NPs glasses was found higher than ZBTSm-MPs glasses due to the distributions of nano-scale particles in tellurite glass network. There was a linear trend of increment in the refractive index in both sets of glass series along with the concentrations of dopants. The refractive index of ZBTSm-NPs glasses was found higher than ZBTSm-MPs glasses due to the shift in compactness of glass structure with nano-scale particles. In comparison, the absorption peaks of ZBTSm-MPs glasses were greater than ZBTSm-NPs glasses which were mainly due to the restriction of electrons mobility in glass network with nano-scale particles. The optical band gap energy in ZBTSm-NPs glasses was found greater than ZBTSm-MPs glasses which correspond to the widening of forbidden gap with nano-scale particles. The polarizability of ZBTSm-NPs and ZBTSm-MPs was found in non-linear trends along with dopant concentrations. Based on these findings, the improvement of optical properties has been made by introducing samarium oxide nanoparticles in tellurite glass which is beneficial for optoelectronic devices.

  相似文献   
88.
ABSTRACT

Long-term satellite data are used to investigate the variability of ocean surface chlorophyll-a (chl-a) concentration in the Halmahera Sea (HS) under influence of the Australian-Indonesian Monsoon (AIM), the El Niño-Southern Oscillation (ENSO), and the Indian Ocean Dipole (IOD). In this study, we first analysed the seasonal variability of chl-a, and then examine the relationship between surface chl-a, sea surface temperature (SST), and sea surface wind stress in the area. Our results suggest that prevailing southeasterly winds play a fundamental role in generating chl-a blooms in the HS. Particularly on a seasonal timescale, through the mechanism of Ekman mass transport, strengthening of southeasterly wind stress during the Southeast Monsoon season (June – August) produces enhanced chl-a concentrations associated with ocean surface cooling in the area of study. On the other hand, the chl-a bloom completely diminishes during the Northwest Monsoon season (December – February) due to weakening of wind stress and Ekman transport. On an interannual timescale, sea level pressure and wind stress are coherent with ENSO and IOD phases. During El Niño and positive IOD events (La Niña and negative IOD events), both sea level pressure and wind stress greatly increase (decrease) over the HS. These conditions cause an anomaly in southerly (northerly) wind stress, which is favourable to an enhancement (reduction) of the chl-a concentration in the region. This study demonstrates that sea level pressure and wind stress are the critical factors in determining the magnitude of chl-a bloom in the HS.  相似文献   
89.
The combined approach of quasilinearization and invariant imbedding is used for computing solutions of the nonlinear regularized long-wave (RLW) equation. The accuracy and efficiency of the scheme is tested by obtaining a solitary wave solution of the equation. In another example the development of an undular bore is discussed. The results are in good agreement with the available results.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号