首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   33篇
  国内免费   2篇
电工技术   2篇
化学工业   226篇
金属工艺   9篇
机械仪表   8篇
建筑科学   17篇
能源动力   18篇
轻工业   30篇
水利工程   2篇
石油天然气   1篇
无线电   19篇
一般工业技术   53篇
冶金工业   10篇
原子能技术   2篇
自动化技术   126篇
  2024年   4篇
  2023年   8篇
  2022年   64篇
  2021年   72篇
  2020年   18篇
  2019年   18篇
  2018年   26篇
  2017年   26篇
  2016年   33篇
  2015年   27篇
  2014年   26篇
  2013年   29篇
  2012年   28篇
  2011年   32篇
  2010年   18篇
  2009年   19篇
  2008年   18篇
  2007年   11篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1992年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有523条查询结果,搜索用时 0 毫秒
31.
Forgetting Exceptions is Harmful in Language Learning   总被引:2,自引:0,他引:2  
We show that in language learning, contrary to received wisdom, keeping exceptional training instances in memory can be beneficial for generalization accuracy. We investigate this phenomenon empirically on a selection of benchmark natural language processing tasks: grapheme-to-phoneme conversion, part-of-speech tagging, prepositional-phrase attachment, and base noun phrase chunking. In a first series of experiments we combine memory-based learning with training set editing techniques, in which instances are edited based on their typicality and class prediction strength. Results show that editing exceptional instances (with low typicality or low class prediction strength) tends to harm generalization accuracy. In a second series of experiments we compare memory-based learning and decision-tree learning methods on the same selection of tasks, and find that decision-tree learning often performs worse than memory-based learning. Moreover, the decrease in performance can be linked to the degree of abstraction from exceptions (i.e., pruning or eagerness). We provide explanations for both results in terms of the properties of the natural language processing tasks and the learning algorithms.  相似文献   
32.
We aim to reduce the social cost of congestion in many smart city applications. In our model of congestion, agents interact over limited resources after receiving signals from a central agent that observes the state of congestion in real time. Under natural models of agent populations, we develop new signalling schemes and show that by introducing a non-trivial amount of uncertainty in the signals, we reduce the social cost of congestion, i.e., improve social welfare. The signalling schemes are efficient in terms of both communication and computation, and are consistent with past observations of the congestion. Moreover, the resulting population dynamics converge under reasonable assumptions.  相似文献   
33.
The use of plants as traditional medicines is common and has prevailed in many different cultures over time. Polymethoxyflavones (PMFs) are natural polyphenols from the group of flavonoids. Zapotin, a member of the PMFs, is found mainly in citrus plants and is almost exclusively limited to their peels. The chemical structure of zapotin has been questioned from the very beginning, since the structure of flavonoids with a single oxygen atom in the C2′ position is extremely rare in the plant kingdom. To clarify this, the structural determination and bio-inspired synthesis of zapotin are discussed in detail in this review. Due to the broad biological potential of PMFs, the complication in the isolation process and characterization of PMFs, as well as their purification, have been estimated by adapting various chromatographic methods. According to available data from the literature, zapotin may be a promising curative agent with extensive biological activities, especially as a chemopreventive factor. Apart from that, zapotin acts as an antidepressant-like, anticancer, antifungal, and antioxidant agent. Finally, accessible studies about zapotin metabolism (absorption, distribution, metabolism, excretion, and toxicity) underline its potential in use as a therapeutic substance.  相似文献   
34.
Atherosclerosis involves an ongoing inflammatory response of the vascular endothelium and vessel wall of the aorta and vein. The pleiotropic effects of statins have been well described in many in vitro and in vivo studies, but these effects are difficult to achieve in clinical practice due to the low bioavailability of statins and their first-pass metabolism in the liver. The aim of this study was to test a vessel wall local drug delivery system (DDS) using PLA microstructures loaded with simvastatin. Wistar rats were fed high cholesterol chow as a model. The rat vessels were chemically injured by repeated injections of perivascular paclitaxel and 5-fluorouracil. The vessels were then cultured and treated by the injection of several concentrations of poly(L,L-lactide) microparticles loaded with the high local HMG-CoA inhibitor simvastatin (0.58 mg/kg) concentration (SVPLA). Histopathological examinations of the harvested vessels and vital organs after 24 h, 7 days and 4 weeks were performed. Microcirculation in mice as an additional test was performed to demonstrate the safety of this approach. A single dose of SVPLA microspheres with an average diameter of 6.4 μm and a drug concentration equal to 8.1% of particles limited the inflammatory reaction of the endothelium and vessel wall and had no influence on microcirculation in vivo or in vitro. A potent pleiotropic (anti-inflammatory) effect of simvastatin after local SVPLA administration was observed. Moreover, significant concentrations of free simvastatin were observed in the vessel wall (compared to the maximum serum level). In addition, it appeared that simvastatin, once locally administered as SVPLA particles, exerted potent pleiotropic effects on chemically injured vessels and presented anti-inflammatory action. Presumably, this effect was due to the high local concentrations of simvastatin. No local or systemic side effects were observed. This approach could be useful for local simvastatin DDSs when high, local drug concentrations are difficult to obtain, or systemic side effects are present.  相似文献   
35.
G-quadruplexes have long been perceived as rare and physiologically unimportant nucleic acid structures. However, several studies have revealed their importance in molecular processes, suggesting their possible role in replication and gene expression regulation. Pathways involving G-quadruplexes are intensively studied, especially in the context of human diseases, while their involvement in gene expression regulation in plants remains largely unexplored. Here, we conducted a bioinformatic study and performed a complex circular dichroism measurement to identify a stable G-quadruplex in the gene RPB1, coding for the RNA polymerase II large subunit. We found that this G-quadruplex-forming locus is highly evolutionarily conserved amongst plants sensu lato (Archaeplastida) that share a common ancestor more than one billion years old. Finally, we discussed a new hypothesis regarding G-quadruplexes interacting with UV light in plants to potentially form an additional layer of the regulatory network.  相似文献   
36.
In the past few years, gallium‐68 has demonstrated significant potential as a radioisotope for positron emission tomography (PET), and the optimization of chelators for gallium coordination is a major goal in the development of radiopharmaceuticals. Methylaminotriazacyclononane trimethylphosphinate (MA‐NOTMP), a new C‐functionalized triazacyclononane derivative with phosphinate pendant arms, presents excellent coordination properties for 68Ga (low ligand concentration, labelling at low pH even at room temperature). A “ready‐to‐be‐grafted” bifunctional chelating agent (p‐NCS‐Bz‐MA‐NOTMP) was prepared to allow 68Ga labelling of sensitive biological vectors. Conjugation to a bombesin(7–14) derivative was performed, and preliminary in vitro experiments demonstrated the potential of MA‐NOTMP in the development of radiopharmaceuticals. This new chelator is therefore of major interest for labelling sensitive biomolecules, and further in vivo experiments will soon be performed.  相似文献   
37.
38.
39.
The effect of the clay content and the method of its combination with amine-terminated butadiene-acrylonitrile (ATBN) on the structure and behavior of epoxy was studied. In the case of the simultaneous addition of both components, the increasing clay content had a very small effect on the size of the reaction-induced phase separation-formed particles at 5% rubber content due to predominant elimination of two major clay effects, i.e., the nucleation due to phase separation and the kinetics. As a result, both the time window between the onset of phase separation and vitrification and the viscosity at the cloud point did not change significantly. The minor change in the particle size/clay content dependences with different curing temperatures indicates that the balance between the two clay effects shifted. The corresponding study of the mechanical behavior indicated that the best balanced mechanical properties were obtained at certain clay/ATBN ratios, and thus, there was synergy between the components. Similar mechanical parameters were obtained for the application of both components in the form of ATBN/montmorillonite intercalate. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
40.
In this paper we analyze the impact of memory hierarchies on time-energy trade-off in parallel computations. Contemporary computing systems have deep memory hierarchies with significantly different speeds and power consumptions. This results in nonlinear phenomena in the processing time and energy usage emerging when the size of the computation is growing. In this paper the nonlinear dependence of the time and energy on the size of the solved problem is formalized and verified using measurements in practical computer systems. Then it is applied to formulate a problem of minimum time and minimum energy scheduling parallel processing of divisible loads. Divisible load theory is a scheduling and performance model of data-parallel applications. Mathematical programming is exploited to solve the scheduling problem. A trade-off between energy and schedule length is analyzed and again nonlinear relationships between these two criteria are observed. Further performance analysis reveals that energy consumption and schedule length are ruled by a complex interplay between the costs and speeds of on-core and out-of-core computations, communication delays, and activating new machines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号