首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5587篇
  免费   438篇
  国内免费   32篇
电工技术   107篇
综合类   6篇
化学工业   1633篇
金属工艺   184篇
机械仪表   168篇
建筑科学   213篇
矿业工程   16篇
能源动力   301篇
轻工业   562篇
水利工程   47篇
石油天然气   94篇
无线电   563篇
一般工业技术   1052篇
冶金工业   329篇
原子能技术   36篇
自动化技术   746篇
  2023年   58篇
  2022年   143篇
  2021年   197篇
  2020年   160篇
  2019年   223篇
  2018年   304篇
  2017年   235篇
  2016年   243篇
  2015年   202篇
  2014年   246篇
  2013年   499篇
  2012年   284篇
  2011年   345篇
  2010年   292篇
  2009年   284篇
  2008年   263篇
  2007年   192篇
  2006年   199篇
  2005年   129篇
  2004年   129篇
  2003年   160篇
  2002年   122篇
  2001年   89篇
  2000年   106篇
  1999年   84篇
  1998年   120篇
  1997年   67篇
  1996年   55篇
  1995年   50篇
  1994年   39篇
  1993年   35篇
  1992年   23篇
  1991年   33篇
  1990年   20篇
  1989年   21篇
  1988年   25篇
  1987年   44篇
  1986年   23篇
  1985年   27篇
  1984年   28篇
  1983年   25篇
  1982年   16篇
  1981年   19篇
  1980年   26篇
  1979年   15篇
  1978年   20篇
  1977年   21篇
  1976年   26篇
  1975年   21篇
  1973年   18篇
排序方式: 共有6057条查询结果,搜索用时 375 毫秒
891.
The aim of this study is to characterize the structural noise for a better flaw detection in heterogeneous materials (steels, weld, composites...) using ultrasonic waves. For this purpose, the continuous wavelet transform is applied to ultrasonic A-scan signals acquired using an ultrasonic non destructive testing (NDT) device. The time-scale representation provided, which highlights the temporal evolution of the spectral content of the A-scan signals, is relevant but can lead to misinterpretation. The problem is to identify if each pattern from the wavelet representation is due to the structural noise or the flaw. To solve this problem, a detection technique based on statistical significance testing in the time-scale plane is used. Information about the structural noise signals is injected into the decision process using an autoregressive model, which seems relevant according to the spectral content of the signal. The approach is tested on experimental signals, obtained by ultrasonic NDT of metallic materials (austenitic stainless steel) then on a weld in this steel and indeed enables to distinguish the components of the signal as flaw echoes, which differ from the structural noise.  相似文献   
892.
Layered double hydroxides (LDHs), also called anionic clays, consist of cationic brucite-like layers and exchangeable interlayer anions. These hydrotalcite-like compounds, with Zn and Al in the layers and chloride in the interlayer space, were prepared following the coprecipitation method at constant pH. The effect of pH, aging time and anion concentration on the intercalation of fluorophosphate \((\hbox {PO}_{3}\hbox {F}^{2-}\), FP) in the [Zn–Al] LDH was investigated. The best crystalline material, with high exchange extent, was obtained by carrying out the exchange at 25\({^{\circ }}\hbox {C}\) in a 0.03 M FP solution at pH 7 with at least 42 h of aging time. A mechanism for the FP intercalation was confirmed by X-ray diffraction, infrared spectroscopy and thermogravimetry (TG) analyses (TG and DTG curves).  相似文献   
893.
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic–plastic damage model parameter identification. An elastic–plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic–plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.  相似文献   
894.
Objective: The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets.

Significance: This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential.

Methods: Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses.

Results: The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution.

Conclusions: Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.  相似文献   

895.
Commercial PET films were surface treated and subsequently coated with either rosemary (RME) or clove (CE) extracts. Surface treatments involved (1) corona treatment, (2) chemical modification, and (3) plasma treatment. Radical scavenging activity (RSA) of both pure plant extracts and coated film extracts were determined using the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) method. RME‐coated films showed a % RSA of 25.6%, 22.4%, and 24.1% for plasma, chemical modification, and corona treatment, respectively, at an extract concentration of 1402 ppm, respectively, while pure RME showed a %RSA of 16.0%. Respective %RSA values for CE were 25.0% for plasma, 25.2% for chemically modified, and 25.2% for corona‐treated films at 1402 ppm, while pure CE showed a %RSA of 47.6%. Thiobarbituric acid (TBA) test, performed on ground fish muscle wrapped in all types of employed films, showed a remarkable decrease in the degree of fish oxidation ranging between 50.0 and 80.0% after 6 days of storage. Contact angle measurements confirmed that surface chemically modified films had the highest adhesion strength followed by corona and plasma‐treated films. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X‐ray photoelectron spectroscopy (XPS) data also supported contact angle measurements. Finally, the oxygen permeability of surface‐treated films did not differ from untreated films indicating that surface treatment did not affect film barrier properties.  相似文献   
896.
Pulsed laser deposition of Al2O3 onto porous silicon (PS) is shown to provide excellent passivation of multi-crystalline silicon surfaces intended for solar cells applications. Surface passivation and reflectivity are investigated before and after the deposition of various nominal thicknesses of Al2O3 ranging from isolated nanoparticles to ~80 nm-thick films. The level of surface passivation is determined by techniques based on photoconductance and FTIR. As a result, the effective minority carrier lifetime increase from 1 to 130 μs at a minority carrier density (Δn) of 1?×?1013 cm?3. However, passivation scheme provide a significant decrease in the reflectivity; it’s reduced from 28% to about 5% after Al2O3/PS coating.  相似文献   
897.
In the present work, a phase field damage model is developed to address the numerical simulation of brittle fracture. This model successfully captures some important aspects of crack propagation, including crack branching and bifurcation. In addition, the proposed phase field model has been developed in the general framework of anisotropic elasticity. It can thus be used for the simulation of brittle fracture in polycrystalline materials, for which crack propagation is impacted by crystallographic orientation because of the anisotropic character of stiffness properties.  相似文献   
898.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   
899.
Radiochemistry - Mesostructured silica monoliths were synthesized using a simple reproducible strategy of an instant direct templating with nonionic Brij-35 copolymer surfactant and C12 alkane...  相似文献   
900.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号