全文获取类型
收费全文 | 213篇 |
免费 | 7篇 |
国内免费 | 4篇 |
专业分类
电工技术 | 3篇 |
化学工业 | 57篇 |
金属工艺 | 6篇 |
机械仪表 | 10篇 |
建筑科学 | 3篇 |
能源动力 | 14篇 |
轻工业 | 13篇 |
石油天然气 | 2篇 |
无线电 | 23篇 |
一般工业技术 | 75篇 |
冶金工业 | 6篇 |
自动化技术 | 12篇 |
出版年
2024年 | 2篇 |
2023年 | 9篇 |
2022年 | 12篇 |
2021年 | 7篇 |
2020年 | 8篇 |
2019年 | 11篇 |
2018年 | 10篇 |
2017年 | 5篇 |
2016年 | 11篇 |
2015年 | 9篇 |
2014年 | 7篇 |
2013年 | 17篇 |
2012年 | 8篇 |
2011年 | 7篇 |
2010年 | 9篇 |
2009年 | 17篇 |
2008年 | 18篇 |
2007年 | 12篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有224条查询结果,搜索用时 15 毫秒
21.
22.
23.
Dynamic source routing (DSR) is a robust protocol commonly applied to multi‐hop wireless mobile ad hoc networks (MANETs). In this paper, an algorithm is proposed for modifying the basic DSR protocol to enhance its performance by reducing the number of redundant route reply packets (RREPs). In the modified DSR (MDSR), for a source destination pair, the destination responds to the first received route request packet (RREQ) with an RREP, and the subsequently received RREQs, bearing the same request ID, are responded to only if the hop count is less than that of all the previously received RREQs. The performance of MDSR has been compared with that of the basic DSR for different network densities and for different mobility of nodes. Simulation results show that MDSR gives fewer control packets, less latency and a higher packet delivery ratio than DSR. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
24.
Ravishankar Sathyamurthy Abd Elnaby Kabeel El‐Sayed El‐Agouz DSilva Rufus Hitesh Panchal Thirugnanasambantham Arunkumar Athikesavan Muthu Manokar David Gnanaraj Prince Winston 《国际能源研究杂志》2019,43(8):3295-3305
This work aims at augmenting the amount of potable water using MgO and TiO2 in stepped solar still. Experiments were carried out for the climatic conditions of Chennai, India, with two different concentrations of nanofluids inside a stepped basin under three different cases. Results show that there is an improvement in yield of fresh water from stepped solar still by 33.18% and 41.05% using 0.1% and 0.2% volume concentration of TiO2 nanofluid, respectively, whereas the freshwater yield from stepped still with MgO nanofluids improved by 51.7% and 61.89%. Furthermore, the economic analysis revealed that the cost of potable water from the modified solar still reduced from 0.029 to 0.016 $/kg. Similarly, the useful annual energy, yearly cost per kilogram, and annual cost per kilowatt hour are significantly profitable with the use of MgO nanofluid in the stepped basin and found as 512.46 kWh, 0.025 $/kg, and 0.026 $/kWh, respectively. It is also found that the cost of potable water from the modified still significantly increases as the amount of fresh water produced is decreased with increased fabrication cost of the solar still. 相似文献
25.
Abd Elnaby Kabeel Yazan Taamneh Ravishankar Sathyamurthy Padmanabhan Naveen Kumar Athikesavan Muthu Manokar Thirugnanasambantham Arunkumar 《亚洲传热研究》2019,48(1):100-114
This study primarily focuses on comparative experimental analysis on standalone conventional solar still (CSS), inclined solar still (ISS), and integrated conventional and inclined solar still (CSS‐ISS) for different parameters that affect the freshwater yield. For enhancing the freshwater yield only a few studies are available on still‐still integration. The present novel study provides a greater improvement in improving the freshwater yield by integrating ISS with CSS. This experimental work mainly concentrates on the importance of water depth (d w) and mass flow rate of water ( m w) in the solar still. Water depth inside the conventional still varied from 0.02 to 0.06 m whereas, water is constantly flown with a mass flow rate of 8.33 kg/hour in an ISS with baffles. The experimental result shows that the accumulated freshwater yield from CSS‐ISS, ISS, and CSS were 6.2, 5.04, and 4.24 kg, respectively. CSS‐ISS and ISS produced 46.23% and 18.87% higher productivity than the CSS. From the experimental investigation, it is also identified that the water temperature is significantly improved by 20% using integration as compared with CSS without integration under the same water depth of d w = 0.02 m. The overall improvement in yield was higher in the case of CSS‐ISS. The deviations between experimental and theoretical values of yield from the conventional and modified solar still were in the range of ±7%. 相似文献
26.
A. Muthu Manokar M. Vimala D. Prince Winston D. R. Rajendran Ravishankar Sathyamurthy A. E. Kabeel 《亚洲传热研究》2020,49(8):4394-4409
In this paper, an experimental study of the conventional solar still (CSS), the conventional solar still with glass cooling (CSSGC), the conventional solar still with basin heating (CSSBH), and the conventional solar still with glass cooling and basin heating (CSSGCBH) was carried out on the basis of the distilled water production, the energy efficiency (EnE), the exergy efficiency (ExE), and economic analysis. The CSSGC and CSSBH contain Peltier modules for cooling the glass and heating the basin. The evaporative heat transfer coefficient for all the experimental stills was calculated. The values of daily distilled water production from the CSSGCBH, CSSBH, CSSGC, and CSS were 4.56, 3.79, 2.49, and 1.89 kg/m2, respectively. The daily distilled yield of the CSSBH and CSSGCBH were increased by 58.55% and 50.13%, respectively, as compared with the CSS. Moreover, the daily EnE and ExE of the CSSGCBH were 27.03% and 3.5%, respectively, whereas the EnE and ExE of the CSS were 10.88% and 1.3%, respectively. Furthermore, the cost of distilled water production was found to be 0.26, 0.35, 0.53, and 0.64 $/day for the CSS, CSSGC, CSSBH, and CSSGCBH, respectively, if the selling price of the distilled water was Rs10. 相似文献
27.
B.?Madhu E.?Balasubramanian Ravishankar?SathyamurthyEmail author P.?K.?Nagarajan D.?Mageshbabu R.?Bharathwaaj A.?Muthu?Manokar 《Applied Solar Energy》2018,54(3):173-177
This paper studies the experimental and exergy analysis of solar still with the sand heat energy storage system. The cumulative yield from solar still with and without energy storage material is found to be 3.3 and 1.89 kg/m2, respectively for 8-h operation. Results show that the exergy efficiency of the system is higher with the least water depth of 0.02 m (mw = 20 kg). Competitive analysis of second law efficiency shows that the exergy efficiency improves the system by 30% than conventional single slope solar still without any heat storage. The maximum exergy efficiency with energy storage material is found as 13.2% and it is less than the conventional solar still without any material inside the basin. 相似文献
28.
R. Naresh Muthu S. Rajashabala R. Kannan 《International Journal of Hydrogen Energy》2017,42(23):15586-15596
A safe and cost effective material for hydrogen storage is indispensable for developing hydrogen fuel cell technology to reach its greater heights. The present work deals with hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride (LiBH4@Ah-BN) nanocomposite. where a facile chemical impregnation method was adopted for the preparation of LiBH4@Ah-BN nanocomposite. The prepared nanocomposite was subjected to various characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Brunauer–Emmett–Teller (BET) Studies, CHNS-Elemental Analysis and Thermo Gravimetric Analysis (TGA). From BET studies, it is confirmed that, there is an enhancement in the specific surface area of LiBH4@Ah-BN nanocomposite (122 m2/g) compared to Ah-BN (70 m2/g). The hydrogen storage ability was examined using a Sieverts-like hydrogenation setup. An excellent hydrogen storage capacity of 2.3 wt% at 100 °C was noticed for LiBH4@Ah-BN nanocomposite. The TGA study indicates the dehydrogenation profile of stored hydrogen in the range of 110–150 °C. The binding energy of stored hydrogen (0.31 eV) lies in recommended range of US-DOE 2020 targets for fuel cell applications. The present investigation demonstrates the preparation of LiBH4@Ah-BN nanocomposite based hydrogen storage medium which has remarkable cycling stability and hydrogen storage capacity. Hence these desirable traits make LiBH4@Ah-BN nanocomposite as a potential hydrogen storage candidate for fuel cell applications in near future. 相似文献
29.
30.