首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2220篇
  免费   136篇
  国内免费   3篇
电工技术   30篇
综合类   5篇
化学工业   616篇
金属工艺   62篇
机械仪表   37篇
建筑科学   195篇
矿业工程   4篇
能源动力   85篇
轻工业   179篇
水利工程   16篇
石油天然气   7篇
无线电   165篇
一般工业技术   450篇
冶金工业   89篇
原子能技术   12篇
自动化技术   407篇
  2023年   24篇
  2022年   40篇
  2021年   78篇
  2020年   48篇
  2019年   68篇
  2018年   53篇
  2017年   57篇
  2016年   86篇
  2015年   87篇
  2014年   106篇
  2013年   162篇
  2012年   141篇
  2011年   195篇
  2010年   104篇
  2009年   133篇
  2008年   142篇
  2007年   131篇
  2006年   103篇
  2005年   83篇
  2004年   85篇
  2003年   51篇
  2002年   59篇
  2001年   31篇
  2000年   35篇
  1999年   30篇
  1998年   18篇
  1997年   20篇
  1996年   26篇
  1995年   21篇
  1994年   15篇
  1993年   13篇
  1992年   15篇
  1991年   10篇
  1990年   7篇
  1989年   16篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1970年   3篇
  1934年   1篇
排序方式: 共有2359条查询结果,搜索用时 15 毫秒
101.
Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of relief, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. We have modified the existing techniques of line drawings and relief generation, and then combine them organically for this particular purpose.  相似文献   
102.
The model-based investigation of fast dynamic motions of anthropomorphic systems is an interesting interdisciplinary field combining research efforts from applied mathematics, robotics, biomechanics, computer graphics and sports. Somersaults and twists of professional platform divers represent a particularly fascinating and extremely difficult type of motion. The purpose of this paper is to show how optimal control methods based on whole-body dynamic models of the diver can be very useful in generating natural platform diving motions. We present 3D somersaults with twists as well as pure somersaults in the sagittal plane for a variety of different take-off configurations and positions to be attained in the aerial phase that all have been produced by optimization of criteria related to energy input. By formulating the dive as a problem with several dynamic phases, we are able to treat contact and flight phase simultaneously, and also to split the flight phase in several sub-phases to correctly model requested positions in the air. Divers are modeled as multibody systems with actuators and damper elements at each joint. For the solution of the optimal control problem we use efficient direct multiple shooting methods based on the boundary value problem approach. The optimization results can be used to generate motions in computer graphics or robotics, but also provide useful insights into biological motion, including joint kinematics and the required torques and forces.  相似文献   
103.
104.
In the European collaborative MEXICO (Model Experiments in Controlled Conditions) project, a series of experiments was carried out on a 4.5 m diameter wind turbine rotor to validate numerical diagnostics tools. Here, some of the measured data are compared with computations of the combined actuator line/Navier–Stokes (AL/NS) model developed at the Technical University of Denmark. The AL/NS model was combined with a large eddy simulation technique and used to compute the flow past the MEXICO rotor in free air and in the DNW German‐Dutch wind tunnel for three commonly defined test cases at wind speeds of 10, 15 and 24 m s ?1. Two sets of airfoil data were used. Comparisons of blade loadings showed that the AL/NS technique with the modified airfoil data is in better agreement with the measurements than with the original 2D airfoil data. Comparisons of detailed near‐wake velocities showed good agreement with the measurements. Computations including the influence of the geometry of the wind tunnel showed that tunnel effects are not significant and the effect of the geometry of the wind tunnel only results in a speedup of 3% at a thrust coefficient of CT = 1.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
105.
The direct-search simplex method for function optimization has been adapted to performance optimization of polymer electrolyte membrane fuel cells (PEMFCs). The established method is strongly application oriented and uses only experimentally determined data for optimization. It is not restricted to discrete parameters optimums and does not require the use of third-party software or computational resources. Hence, it is easy to implement in fuel cell testing stations. The optimization consists of finding, for a given fuel cell load, an optimum set of values of the 7 fuel cell operating parameters: the fuel cell temperature, the reactants' stoichiometric ratios, the reactants' inlet relative humidity, and the reactants' outlet pressures, resulting in the highest fuel cell performance. The performance is measured using a scalar function of the operating parameters and the load and can be defined according to needs.Two PEMFC performance functions: the fuel cell voltage and the system-related fuel cell efficiency were optimized using the procedure for practically sized PEMFC stacks of two designs. With respect to the nominal operating conditions defined as optimal for each stack design by its manufacturer, the gains from the optimization procedure were up to over 12% and up to over 7% for the stack voltage and efficiency, respectively. The validation of the procedure involved 5 stack specimens and four laboratories and consistent results were obtained.  相似文献   
106.
Phosphoric acid‐doped polybenzimidazole (PBI) has been suggested as a promising electrolyte for proton exchange membrane fuel cells operating at temperatures up to 200 °C. This paper describes the development of a crosslinking procedure for PBI membranes by post‐treatment with divinylsulfone. The crosslinking chemistry was studied and optimized on a low‐molecular‐weight model system and the results were used to optimize the crosslinking conditions of PBI membranes. The crosslinked membranes were characterized with respect to chemical and physiochemical properties, showing improved mechanical strength and oxidative stability compared with their linear analogues. Fuel cell tests were further conducted in order to demonstrate the feasibility of the crosslinked membranes. Copyright © 2011 Society of Chemical Industry  相似文献   
107.
In this paper we propose an agitation method based on megasonic acoustic streaming to overcome the limitations in plating rate and uniformity of the metal deposits during the electroplating process. Megasonic agitation at a frequency of 1 MHz allows the reduction of the thickness of the Nernst diffusion layer to less than 600 nm. Two applications that demonstrate the benefits of megasonic acoustic streaming are presented: the formation of uniform ultra-fine pitch flip-chip bumps and the metallisation of high aspect ratio microvias. For the latter application, a multi-physics based numerical simulation is implemented to describe the hydrodynamics introduced by the acoustic waves as they travel inside the deep microvias.  相似文献   
108.
109.
110.
Motivated by the possibility of modifying energy levels of a molecule without substantially changing its band gap, the impact of gradual fluorination on the optical and structural properties of zinc phthalocyanine (FnZnPc) thin films and the electronic characteristics of FnZnPc/C60 (n = 0, 4, 8, 16) bilayer cells is investigated. UV–vis measurements reveal similar Q‐ and B‐band absorption of FnZnPc thin films with n = 0, 4, 8, whereas for F16ZnPc a different absorption pattern is detected. A correlation between structure and electronic transport is deduced. For F4ZnPc/C60 cells, the enhanced long range order supports fill factors of 55% and an increase of the short circuit current density by 18%, compared to ZnPc/C60. As a parameter being sensitive to the organic/organic interface energetics, the open circuit voltage is analyzed. An enhancement of this quantity by 27% and 50% is detected for F4ZnPc‐ and F8ZnPc‐based devices, respectively, and is attributed to an increase of the quasi‐Fermi level splitting at the donor/acceptor interface. In contrast, for F16ZnPc/C60 a decrease of the open circuit voltage is observed. Complementary photoelectron spectroscopy, external quantum efficiency, and photoluminescence measurements reveal a different working principle, which is ascribed to the particular energy level alignment at the interface of the photoactive materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号