首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6455篇
  免费   601篇
  国内免费   17篇
电工技术   90篇
综合类   15篇
化学工业   1459篇
金属工艺   237篇
机械仪表   436篇
建筑科学   116篇
矿业工程   2篇
能源动力   276篇
轻工业   614篇
水利工程   14篇
石油天然气   1篇
无线电   1173篇
一般工业技术   1488篇
冶金工业   474篇
原子能技术   108篇
自动化技术   570篇
  2024年   13篇
  2023年   110篇
  2022年   151篇
  2021年   272篇
  2020年   207篇
  2019年   209篇
  2018年   272篇
  2017年   253篇
  2016年   309篇
  2015年   258篇
  2014年   331篇
  2013年   437篇
  2012年   451篇
  2011年   548篇
  2010年   414篇
  2009年   439篇
  2008年   326篇
  2007年   232篇
  2006年   235篇
  2005年   184篇
  2004年   177篇
  2003年   156篇
  2002年   141篇
  2001年   87篇
  2000年   87篇
  1999年   89篇
  1998年   195篇
  1997年   112篇
  1996年   104篇
  1995年   69篇
  1994年   45篇
  1993年   22篇
  1992年   23篇
  1991年   20篇
  1990年   19篇
  1989年   13篇
  1988年   15篇
  1987年   11篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
排序方式: 共有7073条查询结果,搜索用时 15 毫秒
991.
The metal–insulator transition (MIT) in transition-metal-oxide is fertile ground for exploring intriguing physics and potential device applications. Here, an atomic-scale MIT triggered by surface termination conversion in SrRuO3 ultrathin films is reported. Uniform and effective termination engineering at the SrRuO3(001) surface can be realized via a self-limiting water-leaching process. As the surface termination converts from SrO to RuO2, a highly insulating and nonferromagnetic phase emerges within the topmost SrRuO3 monolayer. Such a spatially confined MIT is corroborated by systematic characterizations on electrical transport, magnetism, and scanning tunneling spectroscopy. Density functional theory calculations and X-ray linear dichroism further suggest that the surface termination conversion breaks the local octahedral symmetry of the crystal field. The resultant modulation in 4d orbital occupancy stabilizes a nonferromagnetic insulating surface state. This work introduces a new paradigm to stimulate and tune exotic functionalities of oxide heterostructures with atomic precision.  相似文献   
992.
Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor-based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser-induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat-sensitive polymer substrates due to the low-temperature requirements of the process. As a proof of concept, temperature-sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.  相似文献   
993.
MXenes, an emerging class of 2D transition metal carbides and nitrides with the general formula Mn+1XnTx (n = 1–4), have potential for application as floating gates in memory devices because of their intrinsic properties of a 2D structure, high density-of-states, and high work function. In this study, a series of MXene–TiO2 core–shell nanosheets are synthesized by deterministic control of the surface oxidation of MXene. The floating gate (multilayer MXene) and tunneling layer (TiO2) in a nano-floating-gate transistor memory (NFGTM) device are prepared simultaneously by a facile, low-cost, and water-based process. The memory performance is optimized via adjustment of the thickness of the oxidation layer formed on the MXene surface. The fabricated MXene NFGTMs exhibit excellent nonvolatile memory characteristics, including a large memory window (>35.2 V), high programming/erasing current ratio (≈106), low off-current (<1 pA), long retention (>104 s), and cyclic endurance (300 cycles). Furthermore, synaptic functions, including the excitatory postsynaptic current/inhibitory postsynaptic current, paired-pulse facilitation, and synaptic plasticity (long-term potentiation/depression), are successfully emulated using the MXene NFGTMs. The successful control of MXene oxidation and its application to NFGTMs are expected to inspire the application of MXene as a data-storage medium in future memory devices.  相似文献   
994.
Nanomaterials with antioxidant properties are promising for treating reactive oxygen species (ROS)-related diseases. However, maintaining efficacy at low doses to minimize toxicity is a critical for clinical applications. Tuning the surface strain of metallic nanoparticles can enhance catalytic reactivity, which has rarely been demonstrated in metal oxide nanomaterials. Here, it is shown that inducing surface strains of CeO2/Mn3O4 nanocrystals produces highly catalytic antioxidants that can protect tissue-resident stem cells from irradiation-induced ROS damage. Manganese ions deposited on the surface of cerium oxide (CeO2) nanocrystals form strained layers of manganese oxide (Mn3O4) islands, increasing the number of oxygen vacancies. CeO2/Mn3O4 nanocrystals show better catalytic activity than CeO2 or Mn3O4 alone and can protect the regenerative capabilities of intestinal stem cells in an organoid model after a lethal dose of irradiation. A small amount of the nanocrystals prevents acute radiation syndrome and increases the survival rate of mice treated with a lethal dose of total body irradiation.  相似文献   
995.
With the miniaturization of personal wearable electronics, considerable effort has been expended to develop high-performance flexible/stretchable energy storage devices for powering integrated active devices. Supercapacitors can fulfill this role owing to their simple structures, high power density, and cyclic stability. Moreover, a high electrochemical performance can be achieved with flexible/stretchable supercapacitors, whose applications can be expanded through the introduction of additional novel functionalities. Here, recent advances in and future prospects for flexible/stretchable supercapacitors with innate functionalities are covered, including biodegradability, self-healing, shape memory, energy harvesting, and electrochromic and temperature tolerance, which can contribute to reducing e-waste, ensuring device integrity and performance, enabling device self-charging following exposure to surrounding stimuli, displaying the charge status, and maintaining the performance under a wide range of temperatures. Finally, the challenges and perspectives of high-performance all-in-one wearable systems with integrated functional supercapacitors for future practical application are discussed.  相似文献   
996.
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution. This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication. It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data. The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means. The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data. The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables. This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach. It also demonstrates the generative function for Kalman-filer based prediction model and its observations. This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration (CPE) for Python.  相似文献   
997.
Photoactivated gas sensors that are fully integrated with micro light-emitting diodes (µLED) have shown great potential to substitute conventional micro/nano-electromechanical (M/NEMS) gas sensors owing to their low power consumption, high mechanical stability, and mass-producibility. Previous photoactivated gas sensors mostly have utilized ultra-violet (UV) light (250–400 nm) for activating high-bandgap metal oxides, although energy conversion efficiencies of gallium nitride (GaN) LEDs are maximized in the blue range (430–470 nm). This study presents a more advanced monolithic photoactivated gas sensor based on a nanowatt-level, ultra-low-power blue (λpeak = 435 nm) µLED platform (µLP). To promote the blue light absorbance of the sensing material, plasmonic silver (Ag) nanoparticles (NPs) are uniformly coated on porous indium oxide (In2O3) thin films. By the plasmonic effect, Ag NPs absorb the blue light and spontaneously transfer excited hot electrons to the surface of In2O3. Consequently, high external quantum efficiency (EQE, ≈17.3%) and sensor response (ΔR/R0 (%) = 1319%) to 1 ppm NO2 gas can be achieved with a small power consumption of 63 nW. Therefore, it is highly expected to realize various practical applications of mobile gas sensors such as personal environmental monitoring devices, smart factories, farms, and home appliances.  相似文献   
998.
Memristors are drawing attention as neuromorphic hardware components because of their non-volatility and analog programmability. In particular, electrochemical metallization (ECM) memristors are extensively researched because of their linear conductance controllability. Two-dimensional materials as switching medium of ECM memristors give advantages of fast speed, low power consumption, and high switching uniformity. However, the multistate retention in the switching conductance range for the long-term reliable neuromorphic system has not been achieved using two-dimensional materials-based ECM memristors. In this study, the copper migration-controlled ECM memristor showing excellent multistate retention characteristics in the switching conductance range using molybdenum disulfide (MoS2) and aluminum oxide (Al2O3) is proposed. The fabricated device exhibits gradual resistive switching with low switching voltage (<0.5 V), uniform switching (σ/µ ∼ 0.07), and a wide switching range (>12). Importantly, excellent reliabilities with robustness to cycling stress and retention over 104 s for more than 5-bit states in the switching conductance range are achieved. Moreover, the contribution of the Al2O3 layer to the retention characteristic is investigated through filament morphology observation using transmission electron microscopy (TEM) and copper migration component analysis. This study provides a practical approach to developing highly reliable memristors with exceptional switching performance.  相似文献   
999.
CdxHg1−xSe/HgS/CdyZn1−yS core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000–1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II CdxHg1−xSe/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap CdyZn1−yS outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40–80%) and aqueous (20–70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.  相似文献   
1000.
The magnetic anisotropy of low-dimensional Mott systems exhibits unexpected magnetotransport behavior useful for spin-based quantum electronics. Yet, the anisotropy of natural materials is inherently determined by the crystal structure, highly limiting its engineering. The magnetic anisotropy modulation near a digitized dimensional Mott boundary in artificial superlattices composed of a correlated magnetic monolayer SrRuO3 and nonmagnetic SrTiO3, is demonstrated. The magnetic anisotropy is initially engineered by modulating the interlayer coupling strength between the magnetic monolayers. Interestingly, when the interlayer coupling strength is maximized, a nearly degenerate state is realized, in which the anisotropic magnetotransport is strongly influenced by both the thermal and magnetic energy scales. The results offer a new digitized control for magnetic anisotropy in low-dimensional Mott systems, inspiring promising integration of Mottronics and spintronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号