首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394501篇
  免费   41994篇
  国内免费   15135篇
电工技术   21026篇
技术理论   34篇
综合类   24700篇
化学工业   76582篇
金属工艺   21159篇
机械仪表   23554篇
建筑科学   30143篇
矿业工程   11326篇
能源动力   10692篇
轻工业   31928篇
水利工程   6754篇
石油天然气   22963篇
武器工业   2949篇
无线电   45225篇
一般工业技术   51226篇
冶金工业   18055篇
原子能技术   3639篇
自动化技术   49675篇
  2024年   1253篇
  2023年   5539篇
  2022年   9566篇
  2021年   14403篇
  2020年   11765篇
  2019年   11555篇
  2018年   12603篇
  2017年   14175篇
  2016年   13433篇
  2015年   17612篇
  2014年   21190篇
  2013年   25529篇
  2012年   25440篇
  2011年   27429篇
  2010年   24579篇
  2009年   23330篇
  2008年   22545篇
  2007年   21714篇
  2006年   22015篇
  2005年   19165篇
  2004年   13066篇
  2003年   11566篇
  2002年   11182篇
  2001年   9843篇
  2000年   9766篇
  1999年   10155篇
  1998年   7631篇
  1997年   6438篇
  1996年   6045篇
  1995年   4988篇
  1994年   4073篇
  1993年   2871篇
  1992年   2346篇
  1991年   1748篇
  1990年   1270篇
  1989年   1010篇
  1988年   827篇
  1987年   555篇
  1986年   408篇
  1985年   263篇
  1984年   184篇
  1983年   123篇
  1982年   145篇
  1981年   93篇
  1980年   93篇
  1979年   41篇
  1978年   7篇
  1976年   7篇
  1974年   8篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   
72.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
73.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
74.
75.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
76.
77.
Zhang  Miao  Chen  Luwang  Yao  Duoxi  Hou  Xiaowei  Zhang  Jie  Qin  Hao  Ren  Xingxing  Zheng  Xin 《Mine Water and the Environment》2022,41(3):775-789

Coal mining can dramatically change hydrogeological conditions and induce serious environmental problems. Fifty groundwater samples were collected from the main aquifers in the Yuaner coal mine (Anhui Province, China). The results show that the main hydrogeochemical processes in the mine include dissolution, precipitation, pyrite oxidation, desulfurization, and cation exchange. The Neogene porous aquifer is affected by groundwater flow conditions; its main hydrogeochemical processes are dissolution of carbonate minerals and gypsum, and cation exchange. The Permian coal measure’s fractured sandstone aquifer was confirmed to be controlled by the region’s geological structure; its main hydrogeochemical processes are desulfurization and cation exchange. The Carboniferous Taiyuan limestone aquifer was determined by both groundwater flow conditions and regional geological structure; its main hydrogeochemical processes are dissolution of carbonate minerals and gypsum, pyrite oxidation, and cation exchange. Additionally, hydrogeochemical inverse modeling of the groundwater flow path confirm the hydrochemistry results and principal component analysis.

  相似文献   
78.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
79.
Zhao  Kui  He  Fangmin  Meng  Jin  Wu  Hao  Zhang  Lei 《Wireless Networks》2021,27(3):1671-1681
Wireless Networks - In such mobile platforms as ships and aircraft, the detection and reconnaissance devices are near to the communication facilities. When working at the same time, they will...  相似文献   
80.
Mitigating gibbsite particle cracking and breakage during industrial alumina production can increase the quality of smelter grade alumina product by reducing the ultrafine particle content. Therefore, it is essential to investigate the particle cracking during static calcination and the breakage of calcined gibbsite particles under external force. In this work, we investigated the impact of the calcination ramping rate and the crystallite size on gibbsite particle cracking during static calcination. A slow ramping rate and a large pristine crystallite size tend to increase particle cracking. Apart from the study of particle cracking behaviour, we also investigated the breakage of calcined gibbsite particle under external force. Cracks on the particle surface can initiate breakage within the crystallite and along the grain boundary under external force. The breakage within crystallite occurs as the cleavage of the crystallite, while the breakage along the grain boundary leads to the shedding of a whole crystallite. We further explored the factors influencing the strength of calcined gibbsite particles. With increasing calcination temperature, the strength of particle increases when gibbsite converts to boehmite, and then decreases when boehmite converts into amorphous alumina. Particles containing smaller crystallites and calcined with fast ramping rates exhibit higher resistance to breakage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号