首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118196篇
  免费   9838篇
  国内免费   4947篇
电工技术   7081篇
技术理论   7篇
综合类   7589篇
化学工业   20396篇
金属工艺   6473篇
机械仪表   7306篇
建筑科学   9646篇
矿业工程   3444篇
能源动力   3503篇
轻工业   7672篇
水利工程   2115篇
石油天然气   7283篇
武器工业   876篇
无线电   13406篇
一般工业技术   14272篇
冶金工业   5510篇
原子能技术   1288篇
自动化技术   15114篇
  2024年   552篇
  2023年   2033篇
  2022年   3525篇
  2021年   4859篇
  2020年   3739篇
  2019年   3140篇
  2018年   3393篇
  2017年   3924篇
  2016年   3297篇
  2015年   4685篇
  2014年   5701篇
  2013年   6772篇
  2012年   7414篇
  2011年   7966篇
  2010年   6949篇
  2009年   6633篇
  2008年   6421篇
  2007年   6079篇
  2006年   6348篇
  2005年   5517篇
  2004年   3762篇
  2003年   3286篇
  2002年   3076篇
  2001年   2801篇
  2000年   2949篇
  1999年   3161篇
  1998年   2671篇
  1997年   2274篇
  1996年   2097篇
  1995年   1829篇
  1994年   1473篇
  1993年   1056篇
  1992年   860篇
  1991年   677篇
  1990年   491篇
  1989年   436篇
  1988年   353篇
  1987年   245篇
  1986年   167篇
  1985年   97篇
  1984年   65篇
  1983年   49篇
  1982年   64篇
  1981年   39篇
  1980年   35篇
  1979年   10篇
  1978年   3篇
  1965年   3篇
  1959年   4篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Knowledge on the mechanical and thermophysical properties of ZnO·nAl2O3 is essential for practical applications. Based on the first-principles calculations and the bond valence method, the disordered spinel-type structure of ZnO·nAl2O3 (n = 1–4) was constructed to investigate the composition-dependent mechanical and thermophysical properties. The effects of cation substitution on the hardness, elastic modulus, thermal expansion, and thermal conductivity were revealed from the insights into the chemical bonds. At a higher n, the tetrahedral bond is stronger, manifested as its higher hardness and bulk modulus as well as smaller thermal expansion coefficient. Meanwhile, the octahedral bond is weaker, leading to the lower hardness and bulk modulus, along with the larger expansion coefficient. In consequence, the hardness and elastic moduli of ZnO·nAl2O3 are improved moderately while the expansion coefficient is decreased with the rise of n. Due to the different vibration characteristics of ZnIV and AlIV, the cation disorder in the 8a site provides the primary source of phonon scattering, resulting in the dramatic reduction of thermal conductivity as n increases. The understanding offers guidance on the application-oriented design of new oxide spinels.  相似文献   
992.
ZrO2 microspheres are widely used as a simulant of UO2 in the development of nuclear fuel. However, the cracking of ZrO2 microspheres prepared by internal gelation is still a challenge during drying and sintering processes. To address this issue, we designed and optimized the washing process for obtaining crack-free ZrO2 microspheres. Through thermogravimetric, infrared, Raman, BET, and SEM analysis, it is shown that the cracking of the microspheres is mainly related to the pores in microspheres. The washing solvent with low surface tension is used to reduce the effect of capillary force on pore shrinkage. Therefore, the optimal washing process was designed as trichloroethylene (TCE)—0.5 M NH3.H2O—Propylene glycol methyl ether (PM) and gel microspheres with a high specific surface area of 315.3 m2/g and pore volume of 0.4125 cm3/g were obtained. The characterizations also further showed that when the microspheres were dried and sintered, the water vapor and the decomposition gas of organic matter were completely released from the pores in the microspheres. Our new washing process could be directly extended for preparing crack-free ceramic microspheres by internal gelation.  相似文献   
993.
High-voltage atmospheric cold plasma (HVACP) treatment generates reactive gas species that induce inter- and intramolecular reactions in soybean oil. The goal of this study is to analyze the effect of HVACP treatment on the chemical structure of soybean oil in a hydrogen gas environment at atmospheric pressure. HVACP was used to treat soybean oil (15 g) for up to 6 hours by triplicate. Plasma-generated reactive gas species interact with the sample, producing three distinct fractions identified as a liquid, gel, and solid. Fatty acid profile, Fourier-transform infrared spectroscopy, proton and carbon nuclear magnetic resonance, size-exclusion chromatography, thermal properties, and peroxide value were used to characterize the chemical structure. Results indicated a lower content of polyunsaturated fatty acids, increased content of saturated fatty acids, and the presence of isomers. An insoluble portion was observed in the solid fraction and increased with treatment time up to 42% in the 6-h treated samples. Plasma species may cause two main reactions: polymerization and hydrogenation.  相似文献   
994.
Ti4+-modified MgZrNb2O8 (MgZr1-xTixNb2O8, x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized using the traditional solid-state reaction method. Pure MgZr1–xTixNb2O8 was detected without any secondary phase via the X-ray diffraction patterns. According to the sintering behavior and the surface morphology results, the introduction of Ti4+ reduced the sintering temperature and promoted the grain growth. The correlations between the dielectric properties and the crystal structure were analyzed through the Rietveld refinement and Raman spectroscopy. The slight shifts of the Raman peaks, corresponding to different vibration modes, were induced by the substitution of Ti4+ for Zr4+ and related to the improved quality factor. In general, the sample of MgZr0.9Ti0.1Nb2O8 sintered at 1320°C for 4 h exhibited promising microwave dielectric properties with an ultra-high Q × f value of 130 123 GHz (at 7.308 GHz, 20°C), which is potential for 5G communication applications.  相似文献   
995.
Extinction ratio (ER) is one of the important parameters to characterize the polarization-maintaining (PM) performance of the fiber. In this paper, we report the preparation and properties of a novel chalcogenide microstructure fiber with a high ER. We fabricate a preform using a peeled-off extrusion method. The core and cladding material of the fiber are Ge9As23Se68 and Ge10As22Se68. The preform was drawn into a fiber with an average ER of −17.08 dB. The loss of the fiber is less than 2 dB over 5.20–8.55 μm, and the minimum loss of the fiber is 0.57 dB/m at 6.2 μm. Moreover, a flat mid-infrared supercontinuum spectrum spanning from 1.53 to 12.50 μm is generated by pumping an 18-cm-long PM fiber for the first time.  相似文献   
996.
As potential waste forms for immobilizing actinide-rich radioactive wastes, Eu2Ti2O7 (Eu as a surrogate for minor actinides) pyrochlore glass-ceramics were fabricated via hot isostatic pressing (HIPing) at 1200°C. The structure and microstructure at the reaction interface between the glass-ceramic waste form and the stainless steel (SS) canister under HIPing conditions were carefully investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and synchrotron single crystal X-ray diffraction (SC-XRD). The interactions at the reaction interface led to the formations of a ~10-µm-thick Cr2O3 layer as the oxidation front of the SS and a layer of a mixed oxide phase (Eu1.25SiCr0.8Ti1.2O7.5) on the glass-ceramic side of the reaction interface. The crystal structure of such a unique mixed oxide phase was revealed indubitably with a combination of synchrotron SC-XRD and TEM assisted with a focused ion beam (FIB) SEM system. The improved structural understanding of the reaction interface will help to support the utilization of HIPing as a versatile hot consolidation process for the treatment of radioactive wastes.  相似文献   
997.
Nanocrystalline cellulose (NCC) was prepared from office waste paper (OWP) by sulfuric acid hydrolysis method in this paper and it was used to prepare a series of poly (lactic acid) PLA/NCC composites by using a dissolution method in solvent N, N-dimethylformamide solution. The results indicated that with the addition of only 3 wt% NCC, the composites exhibited outstanding mechanical property. The tensile, bending and impact properties of the PLA/3NCC composite were improved by 8.2%, 13.1%, and 35.9% than those of pure PLA, respectively. On this basis, office waste paper fibers (OWF) were also used as a physical blended filler to enhance PLA/NCC composites to reduce the preparation cost of PLA composites and the perfect PLA/NCC/OWF sample was easily manufactured by melting–blending and injection molding. According to the crystallization and melting performance table, both NCC and OWF can act as nucleating agent to promote the crystallization properties on composites, while the blends did not have positive effect on thermal stability. Furthermore, the water absorption and degradation properties of PLA composites were also studied. This work not only provided a novel idea for the utilization of office waste paper but also successfully produced environment friendly composites with favorable mechanical properties and crystallization performance.  相似文献   
998.
The compound (4-fluorophenyl)(phenyl) phosphine oxide (4-FPO) was designed, synthesized, and used in the modification of epoxy resin (EP). The 4-FPO-modified EP was prepared by curing the reaction mixture of diglycidyl ether of bisphenol A (DGEBA) and 4-FPO in the presence of 4,4′-diaminodiphenylsulfone (DDS). Compared with the unmodified EP, the limiting oxygen index value of the EP/4-FPO-0.6 (4-FPO-modified EP with 0.6 wt% of phosphorus) increased to 31.6%, and the sample achieved UL-94 V-0 rating. The peak of the heat release rate, average of the heat release rate, and total heat release of EP/4-FPO-0.6 were reduced by 39, 24, and 19%, respectively. Mechanism study showed that the quenching effect in the gas and barrier effect in the condensed phase were responsible for the enhanced flame-retardant properties of the 4-FPO-modified EP. The results showed that hydrophobicity and dielectric properties of the modified EP were clearly improved.  相似文献   
999.
Flexible high-temperature polymeric dielectrics with advanced dielectric properties are urgently demanded in various applications. In this work, series of polymer blend films were prepared from aromatic polythiourea (ArPTU) and polyimide (PI). The experimental results revealed that the blend films were properly engineered to achieve higher breakdown strength, greater dielectric constant, and larger energy density than pure PI film. For instance, the optimum property was obtained from the blend film with 10 wt% ArPTU, exhibiting prominent dielectric properties (K = 4.52, Eb = 443 MV/m), enhanced energy density (4.00 J/cm3) as well as excellent heat resistance (Tg = 419°C). In addition, stable dielectric properties at broad temperature range from −50 to 250°C were also acquired. It is deduced that the good compatibility from ArPTU and PI with similar polarity are responsible for the improved properties. The superior comprehensive properties which combine the advantages of ArPTU and PI suggest the potential applications of ArPTU/PI blend film in high-temperature dielectric areas.  相似文献   
1000.
Achieving synergetic improvements of mechanical strength, toughness, and thermal stability of epoxy resin has been a crucial but very challenging issue. Herein, to explore a new solution for circumventing this issue, polyimide microspheres were successfully prepared through the inverse nonaqueous emulsion process, and the structure, size distribution and morphologies of polyimide (PI) microspheres were comprehensively investigated. Then the PI microspheres were incorporated in epoxy resin matrix to systematically investigate the mechanical and thermal properties of obtained epoxy/PI microspheres composites. It was found that the PI microspheres can not only enhance the mechanical strength of epoxy resin, but also significantly improve the toughness. Specially, the epoxy-based composites containing 3 wt% PI microspheres exhibit a 47% increase in tensile strength, while the GIC and Charpy impact strength increase by 106% and 200%, respectively. The toughing mechanism of epoxy/PI microspheres composites was discussed. Moreover, the PI microspheres can also endow the epoxy resin with excellent thermal stability and heat resistance. Thus, this work may open a new opportunity to synergistically enhance the mechanical and thermal properties of epoxy-based composites and may also give some valuable inspiration for the rational design of other high-performance thermosetting composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号