首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126690篇
  免费   4704篇
  国内免费   2549篇
电工技术   3386篇
技术理论   5篇
综合类   5799篇
化学工业   18553篇
金属工艺   6977篇
机械仪表   5582篇
建筑科学   5694篇
矿业工程   1597篇
能源动力   2242篇
轻工业   8327篇
水利工程   2177篇
石油天然气   2360篇
武器工业   401篇
无线电   13911篇
一般工业技术   20699篇
冶金工业   4299篇
原子能技术   796篇
自动化技术   31138篇
  2024年   211篇
  2023年   695篇
  2022年   1286篇
  2021年   1740篇
  2020年   1314篇
  2019年   1056篇
  2018年   15532篇
  2017年   14628篇
  2016年   11103篇
  2015年   2351篇
  2014年   2422篇
  2013年   2855篇
  2012年   6199篇
  2011年   12680篇
  2010年   11173篇
  2009年   8394篇
  2008年   9651篇
  2007年   10391篇
  2006年   2643篇
  2005年   3370篇
  2004年   2617篇
  2003年   2318篇
  2002年   1653篇
  2001年   1030篇
  2000年   1053篇
  1999年   959篇
  1998年   778篇
  1997年   629篇
  1996年   571篇
  1995年   470篇
  1994年   346篇
  1993年   261篇
  1992年   231篇
  1991年   183篇
  1990年   113篇
  1989年   105篇
  1988年   96篇
  1987年   45篇
  1986年   57篇
  1968年   44篇
  1967年   34篇
  1966年   42篇
  1965年   44篇
  1960年   30篇
  1959年   36篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
In the present work, the ohmic resistance of an integrated planar-SOFC (IP-SOFC) has been evaluated by developing a model whose equations have been solved numerically through an FEM method. The model allows to estimate the distribution of voltage and current density in the cell. A comparison between simulated and experimental data of area specific resistance is reported, which shows satisfactory agreement. The mathematical model has also been used to carry out some parametric studies for optimisation purposes. Indeed, a reduction in cell pitch length and an increase in electrode thickness are predicted to lead to a reduction in ohmic losses in IP-SOFCs.  相似文献   
82.
The rheological behavior, thermal properties, and molecular mobility of a series of maleic anhydride (MA) grafted high‐density polyethylenes were characterized and evaluated. The rheological behavior was studied with a Haake minilaboratory. The viscosity of the samples in their melt state decreased with an increase in the graft yield, and this could be attributed to the higher molecular mobility for samples with a higher degree of grafting. The thermal properties were investigated with dynamic mechanical analysis and differential scanning calorimetry. Positron annihilation lifetime measurements were used to study the effect of the degree of grafting on the chemical environment and the atomic‐scale free‐volume properties. It was found that the grafted MA group played a significant chemical inhibition role in positronium formation when the graft yield was low. The results also indicated that the higher the degree of grafting was, the broader the free‐volume distribution was. The relationship between the microstructure and rheological behavior is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
83.
Methylmethacrylate (MMA) and octadecyl acrylate (OA) were grafted to poly(methylhydrosiloxane) (PMHS) by hydrosilylation, respectively, with hexachloroplatinic acid as catalyst, and the former was further hydrolyzed to prepare methacrylic acid (MAA)‐graft‐PMHS under the alkaline condition. Through orthogonal experiment, main factors affecting the graft reaction between OA and PMHS were discussed and arranged in a decreasing order according to their abilities of the effect on the hydrosilylation of OA with PMHS: catalyst dosage, reaction temperature, reaction time, material ratio, and solvent dosage. It was found that the hydrosilylation of OA with PMHS was easier to that of MMA with PMHS. Under optimal conditions, the grafting ratios of MMA with PMHS and OA with PMHS reached about 90 and 95%, respectively. FTIR and 1H NMR spectra indicated that the hydrosilylation reactions followed the Markovnikov's rule and played a strong preference toward β‐1,2‐addition. The test of contact angle indicated that surface energy of a system was mainly dependent on the polar groups. The surface energy of OA‐graft‐PMHS (35.07 mN/m) was similar to those of PMHS (35.62 mN/m) and polyoctadecyl acrylate (36.57 mN/m), and lower than that of MAA‐graft‐PMHS (43.50 mN/m). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
84.
Wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and wear‐particle‐induced osteolysis and bone resorption are the major factors causing the failure of total joint replacements. It is feasible to improve the lubrication and reduce the wear of artificial joints. We need further understanding of the lubrication mechanism of the synovial fluid. The objective of this study is to evaluate the lubricating ability of three major components in the synovial fluid: albumin, globulin, and phospholipids. An accelerated wear testing procedure in which UHMWPE is rubbed against a microfabricated surface with controlled asperities has been developed to evaluate the lubrication behavior. An analysis of the wear particle dimensions and wear amount of the tests has provided insights for comparing their lubrication performance. It is concluded that the presence of biomolecules at the articulating interface may reduce friction. A higher concentration of a biological lubricant leads to a decrease in the wear particle width. In addition, in combination with the wear results and mechanical analysis, the roles of individual biomolecules contributing to friction and wear at the articulating interface are discussed. These results can help us to identify the role of the biomolecules in the boundary lubrication of artificial joints, and further development of lubricating additives for artificial joints may be feasible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
85.
The electrochemical promotion of catalysis (EPOC) of propene combustion was investigated using Pt sputtered thin film on an O2− conductor, 8 mol% Y2O3-stabilized-ZrO2 (YSZ). In order to separate the influence of the thermal migration of the O2− oxide ions from the electrolyte to the catalyst surface and the impact of an electrical polarization on the catalytic activity, several light-off experiments (cool down and heat up procedures) were successively performed under different polarizations, i.e. OCV, +2 and −2 V. These experiments have clearly shown that the presence of O2− (thermally or electrochemically induced) inhibits the catalytic activity of the platinum for the propene deep oxidation. These results demonstrate the importance to define a normalized rate enhancement ratio, ρ n , from a reference value of the catalytic rate corresponding to a Pt surface state free of O2− ions.  相似文献   
86.
Electrochemical treatment processes can significantly contribute to the protection of the environment through the minimization of waste and toxic materials in effluents. From a pharmaceutical point of view and due to the existing resemblance between the electrochemical and biological reactions, it can be assumed that the oxidation mechanisms on the electrode and in the body share similar principles. In this paper, the application of electrochemical studies in the design of an environmentally friendly method was delineated for the new hydrocaffeic acid (HCA, 3,4-dihydroxy hydrocinnamic acid) derivatives synthesis at carbon electrodes in an undivided cell. In this cell, the EC mechanism reaction was involved, comprising two steps alternatively; (1) electrochemical oxidation and (2) chemical reaction. In particular, the electro-organic reactions of HCA, an important biological molecule, were studied in a water–acetonitrile (90:10 v/v) mixture in the presence of benzenesulfinic acid (3) and p-toluenesulfinic acid (4). The research included the use of a variety of experimental techniques, such as cyclic voltammetry, controlled-potential electrolysis and product spectroscopic identification.  相似文献   
87.
A direct ethanol fuel cell (DEFC), which is less prone to ethanol crossover, is reported. The cell consists of PtRu/C catalyst as the anode, Nafion® 117 membrane, and Ni–Co–Fe (NCF) composite catalyst as the cathode. The NCF catalyst was synthesized by mixing Ni, Co, and Fe complexes into a polymer matrix (melamine-formaldehyde resins), followed by heating the mixture at 800 °C under inert atmosphere. TEM and EDX experiments suggest that the NCF catalyst has alloy structures of Ni, Co and Fe. The catalytic activity of the NCF catalyst for the oxygen reduction reaction (ORR) was compared with that of commercially available Pt/C (CAP) catalyst at different ethanol concentrations. The decrease in open circuit voltage (Voc) of the DEFC equipped with the NCF catalysts was less than that of CAP catalyst at higher ethanol concentrations. The NCF catalyst was less prone to ethanol oxidation at cathode even when ethanol crossover occurred through the Nafion®117 film, which prevents voltage drop at the cathode. However, the CAP catalyst did oxidize ethanol at the cathode and caused a decrease in voltage at higher ethanol concentrations.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号