首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   88篇
  国内免费   1篇
电工技术   10篇
化学工业   162篇
金属工艺   45篇
机械仪表   72篇
建筑科学   12篇
能源动力   35篇
轻工业   109篇
水利工程   6篇
石油天然气   1篇
无线电   128篇
一般工业技术   221篇
冶金工业   54篇
原子能技术   12篇
自动化技术   64篇
  2024年   2篇
  2023年   19篇
  2022年   16篇
  2021年   31篇
  2020年   18篇
  2019年   33篇
  2018年   43篇
  2017年   33篇
  2016年   41篇
  2015年   43篇
  2014年   58篇
  2013年   64篇
  2012年   86篇
  2011年   84篇
  2010年   54篇
  2009年   50篇
  2008年   40篇
  2007年   40篇
  2006年   24篇
  2005年   32篇
  2004年   16篇
  2003年   24篇
  2002年   11篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1987年   3篇
排序方式: 共有931条查询结果,搜索用时 31 毫秒
51.
One of the challenges in using wireless sensors that require high power to monitor the environment is finding a renewable power source that can produce enough power. Sediment microbial fuel cells (SMFCs) are considered an alternative renewable power source for remote monitoring, but current research on SMFCs has demonstrated that they can only produce several to tens of mW of continuous power. This limits the use of SMFCs as an alternative renewable remote power source to mW-level power. Such low power is only enough to operate a low-power sensors. However, there are many remote sensors that require higher power, on the order of watts. Current technology using a SMFC to power a remote sensor requiring watts-level intermittent power is limited because of limitations of power management technology. Our goal was to develop a power management system (PMS) that enables a SMFC to operate a remote sensor consuming 2.5 W of power. We designed a custom PMS to store microbial energy in capacitors and use the stored energy in short bursts. Our results demonstrate that SMFCs can be a viable alternative renewable power source for remote sensors requiring high power.  相似文献   
52.
With the vision of being an early demonstrator of fusion energy, the strategic plans for the Fusion DEMO program of Korea (K-DEMO program) has been developed. A staged development of the K-DEMO plant was considered in the strategic plans as to verify technical feasibility in the first stage and economic feasibility in the second stage. The top-tier design requirements and assumptions of the first stage K-DEMO plant are defined and postulated. With these requirements and assumptions, the desired and current status of nuclear fusion technologies are compared to identify the gaps to be filled to design, fabricate, construct, and operate it. The pathways from KSTAR, ITER to K-DEMO plant have also been studied to identify R&D activities for K-DEMO program that are to go in parallel with KSTAR and ITER are extracted from the pathways. Cross-cutting with the fusion R&D activities of the other countries and utilizing the commonalities with the existing systems are discussed with the provision of open-innovation strategy that is one of the key strategies of K-DEMO program. The priority of the R&D activities of K-DEMO program is qualitatively determined in consideration of the gaps, cross-cutting, and risks associated with the R&D investments.  相似文献   
53.
Natural convection heat transfer of a helical tube was investigated experimentally for varying tube diameter, length, height, pitch, radius, and number of turns, in order to determine an appropriate characteristic length to describe the phenomenon. Mass-transfer rates of a CuSO4–H2SO4 electroplating system were measured by replacing the heat transfer system according to the analogy concept. When the pitch-to-diameter ratio was larger than 5 and the pitch-to-radius ratio was smaller than 2.3, the heat transfer rates were very close to those of a horizontal cylinder, and decreased with the diameter of the tube while remaining unaffected by the total length and height. The natural convection heat transfer of the Nth turn of a helical tube was measured for varying pitch-to-diameter ratio and number of turns, and the results were formulated as an empirical correlation.  相似文献   
54.
The operation of a wind turbine generator involves natural uncertainty due to aerodynamic characteristics, resulting in a system that performs inefficiently. In general, the conventional controller now in wide use is not suitable for every operating point, because its tuning parameters and set-points do not meet the varying system characteristics. A study into an optimal control technique is conducted to reduce the negative effects of inherent uncertainty in system operation. In order to resolve the uncertainty problem, an optimal control method for an effective wind turbine generator is designed on the basis of a sensorless frame by utilizing a hybrid of the direct search optimization method (DSO) and the genetic algorithm (GA). This method is easy to implement and computation of functional derivatives is not necessary. The conventional GA is well known for its high performance in global optimization and its effectiveness in making ideal choices for control variables. The proposed DSO-GA hybrid differs from the conventional GA in terms of the sampling survey and the crossover operation. Moreover, the proposed multivariable optimal control strategy is a sensorless optimization technique that determines the pitch angle of the blades and the yaw angle of the nacelles to produce stable maximum power from a wind turbine system under steady-state operation. The proposed DSO-GA controller is implemented for a lab-scale wind turbine generator exposed to artificial wind, and the experimental results constitute a 3-D performance surface model of output voltage, which is used as an objective function for simulation. The optimization procedure with the objective function is carried out by means of the conventional and proposed methods, whose results reveal that the proposed DSO-GA optimizer yields far better performance in terms of generation number, convergence rate, and robustness. Both techniques are applied to a wind power generator through simulation and experiments. The performances are compared, and conclusions are drawn for each case.  相似文献   
55.
56.
Redox behavior of a Ni-Y2O3-stabilized ZrO2 (YSZ) composite anode support and the performance degradation of an anode-supported tubular solid oxide fuel cell (SOFC) were studied under complete oxidation and reduction conditions (degrees of oxidation and reduction = 100%). Materials characterization studies showed that the exposure time in oxidizing and reducing atmospheres played a critical role in the degradation of the porous structures and the physical properties of the anode support. In particular, the redox cycling with an 8 h exposure time resulted in the cracking of YSZ network, leading to significant decay of the mechanical strength. The polarization experiments on the redox-cycled anode-supported tubular cell showed serious performance degradation as a result of the decreases of open-circuit potential and power density. The ac-impedance measurements combined with microstructural observations indicated that the performance degradation resulted mainly from (i) the degradation of anode support, (ii) microcracks across the whole cell, and (iii) interface delamination.  相似文献   
57.
Polyimide (PI)/modified layered double hydroxide (m‐LDH) nanocomposites were prepared in this study. For this work, m‐LDHs were prepared from layered double hydroxides (LDHs) through an anionic exchange reaction with pyromellitic dianhydride (PMDA), succinic acid or terephthalic acid. PMDA and 4,4′‐oxydianiline were used to make the poly(amic acid) precursor for PI. X‐ray diffraction and transmission electron microscopy measurements confirmed that the PMDA‐modified LDH (PMH) and terephthalic acid‐modified LDH (TMH) were well dispersed in the PI matrix. For the succinic acid‐modified LDH, some of the LDH was intercalated with the succinic acid molecules but most maintained its original structure. Thus, the PI/PMH and PI/TMH nanocomposites exhibited improved mechanical, thermal and electrical properties compared to pure PI. The PMH has aromatic groups and is expected to have better π–π interactions with the PI chains than the other m‐LDHs. Thus, the PI/PMH nanocomposites exhibited the best properties among the nanocomposites investigated. Copyright © 2010 Society of Chemical Industry  相似文献   
58.
With the increasing interest in global warming, there has been intense international competition with regard to the introduction of the hydrogen (H2) fuel cell (FC) bus, which represents a promising solution for the low-carbon age. With respect to the investment in H2-based technology development and the expansion of H2 FC vehicles, the consumer attitude is a crucial factor because the Korean government will consider it one of the most important factors in its decision to approve a large-scale introduction of H2 FC buses. In this regard, this study measures the public's willingness to pay (WTP) for a large-scale introduction of H2 FC buses in Korea by employing a survey approach termed the contingent valuation. Furthermore, to enhance statistical efficiency, this study employs the one-and-one-half-bound dichotomous choice method. The annual mean WTP estimate was KRW 4230 (USD 4.55) per household as of 2007. The estimate of the annual benefits to the affected residents was KRW 32.3 billion (USD 34.7 million). The results of this study are expected to be helpful in policy decisions related to the introduction of H2 FC buses and investment in H2 technology development.  相似文献   
59.
60.
ZnO is a very promising material for spintronics applications, with many groups reporting room-temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during pulsed laser deposition (PLD), we find an inverse correlation between magnetization and electron density as controlled by Sn-doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for ferromagnetism include the bound magnetic polaron model or exchange that is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. The progress in ZnO nanowires is also reviewed. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for microlasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼−3 V, and a maximum transconductance of 0.3 mS/mm. Under ultraviolet (UV) illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼5 mS/mm. The channel mobility is estimated to be ∼3 cm2/Vss, comparable to that for thin film ZnO enhancement mode metal-oxide semiconductor field effect transistors (MOSFETs), and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. The Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25°C, very low reverse currents, and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25°C to 150°C, the resistivity of nanorods treated in H2 at 400°C prior to measurement showed an activation energy of 0.089 eV and was insensitive to ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. Sensitive pH sensors using single ZnO nanowires have also been fabricated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号