首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   25篇
  国内免费   1篇
电工技术   6篇
综合类   3篇
化学工业   58篇
金属工艺   5篇
机械仪表   12篇
建筑科学   11篇
能源动力   9篇
轻工业   27篇
水利工程   1篇
无线电   25篇
一般工业技术   91篇
冶金工业   5篇
原子能技术   10篇
自动化技术   42篇
  2023年   2篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   21篇
  2012年   20篇
  2011年   35篇
  2010年   22篇
  2009年   19篇
  2008年   29篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
51.
GLOBALFOUNDRIES 32 nm high-k metal gate technology, with SiGe channel for VT control of P-field effect transistor, is taken into production. This epitaxial channel material is being introduced into high volume manufacturing in complementary metal oxide semiconductor technology. The morphology of the SiGe channel (cSiGe) for narrow width transistors is carefully controlled by process conditions such as epitaxial growth temperature, pre bake condition or in-situ Si recess prior epitaxial deposition. A micro loading effect observed in 28 nm technology was eliminated by an in-situ recess of the silicon before epitaxial deposition. Due to the significant cost of this process step, an epitaxial batch system has been evaluated to reduce the cost of ownership dramatically. Also the cSiGe process has been optimized to minimize the thickness variation of the SiGe channel due to the strong response of VT to cSiGe thickness.  相似文献   
52.
Renal nanoparticle passage opens the door for targeting new cells like podocytes, which constitute the exterior part of the renal filter. When cyclo(RGDfC)‐modified Qdots are tested on isolated primary podocytes for selective binding to the αvβ3 integrin receptor a highly cell‐ and receptor‐specific binding can be observed. In displacement experiments with free cyclo(RGDfC) IC50 values of 150 nM for αvβ3 integrin over‐expressing U87‐MG cells and 60 nM for podocytes are measured. Confocal microscopy shows a cellular Qdot uptake into vesicle‐like structures. Our ex vivo study gives clear evidence that, after renal filtration, nanoparticles can be targeted to podocyte integrin receptors in the future. This could be a highly promising approach for future therapy and diagnostics of podocyte‐associated diseases.  相似文献   
53.
54.
The strong swelling ability of the pH-responsive poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel makes the development of a new type of sensor possible, which combines piezoresistive-responsive elements as mechanoelectrical transducers and the phase transition behavior of hydrogels as a chemomechanical transducer. The sensor consists of a pH-responsive PAA/PVA hydrogel and a standard pressure sensor chip. However, a time-dependent sensor output voltage mirrors only the physical swelling process of the hydrogel but not the corresponding chemical reactions. Therefore, an investigation of the swelling behavior of this hydrogel is essential for the optimization of sensor design. In this work, Fourier transform infrared (FT-IR) spectroscopic imaging was used to study the swelling of the hydrogel under in situ conditions. In particular, laterally and time-resolved FT-IR images were obtained in the attenuated total reflection mode and the entire data set of more than 80,000 FT-IR spectra was evaluated by principal component analysis (PCA). The first and third principal components (PCs) indicate the swelling process. Molecular changes within the carboxyl groups were observed in the second and fourth PC and identified as key processes for the swelling behavior. It was found that time-dependent molecular changes are similar to the electrical sensor output signal. The results of the FT-IR spectroscopic images render an improved chemical sensor possible and demonstrate that in situ FT-IR imaging is a powerful method for the characterization of molecular processes within chemical-sensitive materials.  相似文献   
55.
56.
In this work, we present single-step aeroacoustic calculations using the Lattice Boltzmann method (LBM). Our application case consists of the prediction of an acoustic field radiating from the outlet of a porous media silencer. It has been proved that the LBM is able to simulate acoustic wave generation and propagation. Our particular aim is to validate the LBM for aeroacoustics in porous media. As a validation case, we consider a spinning vortex pair emitting sound waves as the vortices rotate around a common centre. Non-reflective boundary conditions based on characteristics have been adopted from Navier-Stokes methods and are validated using the time evolution of a Gaussian pulse. We show preliminary results of the flow through the porous medium.  相似文献   
57.
Scope: Zinc is implicated as an activator for bone formation, however, its influence on bone calcification has not been reported. This study examined how zinc regulates the bone matrix calcification in osteoblasts. Methods and Results: Two osteoblastic MC3T3‐E1 cell subclones (SC 4 and SC 24 as high and low osteogenic differentiation, respectively) were cultured in normal osteogenic (OSM), Zinc deficient (Zn–, 1 μM), or adequate (Zn+, 15 μM) media up to 20 days. Cells (SC 4) were also supplemented with (50 μg/mL) or no ascorbic acid (AA) in combination with Zinc treatment. Zn– decreased collagen synthesis and matrix accumulation. Although AA is essential for collagen formation, its supplementation could not compensate for Zinc deficiency‐induced detrimental effects on extracellular matrix mineralization. Zn– also decreased the medium and cell layer alkaline phosphatase ALP activity. This decreased ALP activity might cause the decrease of Pi accumulation in response to Zn–, as measured by von Kossa staining. Ca deposition in cell layers, measured by Alizarin red S staining, was also decreased by Zn. Conclusion: Our findings suggest that zinc deprivation inhibits extracellular matrix calcification in osteoblasts by decreasing the synthesis and activity of matrix proteins, type I collagen and ALP, and decreasing Ca and Pi accumulation. Therefore zinc deficiency can be considered as risk factor for poor extracellular matrix calcification.  相似文献   
58.
Efficient organic electronic devices require a detailed understanding of the relation between molecular structure, thin film growth, and device performance, which is only partially understood at present. Here, we show that small changes in molecular structure of a donor absorber material lead to significant changes in the intermolecular arrangement within organic solar cells. For this purpose, phenyl rings and propyl side chains are fused to the diindenoperylene (DIP) molecule. Grazing incidence X-ray diffraction and variable angle spectroscopic ellipsometry turned out to be a powerful combination to gain detailed information about the thin film growth. Planar and bulk heterojunction solar cells with C60 as acceptor and the DIP derivatives as donor are fabricated to investigate the influence of film morphology on the device performance. Due to its planar structure, DIP is found to be highly crystalline in pristine and DIP:C60 blend films while its derivatives grow liquid-like crystalline. This indicates that the molecular arrangement is strongly disturbed by the steric hindrance induced by the phenyl rings. The high fill factor (FF) of more than 75% in planar heterojunction solar cells of the DIP derivatives indicates excellent charge transport in the pristine liquid-like crystalline absorber layers. However, bulk heterojunctions of these materials surprisingly result in a low FF of only 54% caused by a weak phase separation and thus poor charge carrier percolation paths due to the lower ordered thin film growth. In contrast, crystalline DIP:C60 heterojunctions lead to high FF of up to 65% as the crystalline growth induces better percolation for the charge carriers. However, the major drawback of this crystalline growth mode is the nearly upright standing orientation of the DIP molecules in both pristine and blend films. This arrangement results in low absorption and thus a photocurrent which is significantly lower than in the DIP derivative devices, where the liquid-like crystalline growth leads to a more horizontal molecular alignment. Our results underline the complexity of the molecular structure-device performance relation in organic semiconductor devices.  相似文献   
59.
The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non‐extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon‐X, T‐2 toxin, HT‐2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.  相似文献   
60.
Chromate (Cr(VI))-based pigments have been widely used for corrosion protective coatings because of their outstanding protection efficiency especially for aluminum alloy products. However, due to environmental issues associated with Cr VI, more and more requests are being made for alternative solutions. In the presented work zinc was modified by alloying with magnesium to achieve a combination of properties – cathodic protection and less reactivity during production, storage and application of the pigments. The magnesium content leads to a lowering of the electrochemical potential which allows the cathodic protection of aluminum alloys. zinc–magnesium pigments were prepared in different compositions with special attention to the intermetallic phases MgZn, Mg2Zn3, and MgZn2. Pigments were produced and a zinc–magnesium rich coating was formulated and compounded. Pickled samples of AA 2024 unclad were coated and the corrosion behavior investigated. A durability of more than 10,000 h in salt spray test could be achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号