首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4684篇
  免费   274篇
  国内免费   8篇
电工技术   58篇
综合类   8篇
化学工业   924篇
金属工艺   55篇
机械仪表   74篇
建筑科学   177篇
矿业工程   5篇
能源动力   159篇
轻工业   326篇
水利工程   53篇
石油天然气   35篇
无线电   390篇
一般工业技术   1185篇
冶金工业   579篇
原子能技术   13篇
自动化技术   925篇
  2024年   13篇
  2023年   59篇
  2022年   96篇
  2021年   140篇
  2020年   113篇
  2019年   122篇
  2018年   126篇
  2017年   137篇
  2016年   162篇
  2015年   134篇
  2014年   188篇
  2013年   331篇
  2012年   309篇
  2011年   384篇
  2010年   295篇
  2009年   281篇
  2008年   306篇
  2007年   243篇
  2006年   214篇
  2005年   185篇
  2004年   152篇
  2003年   133篇
  2002年   128篇
  2001年   65篇
  2000年   60篇
  1999年   59篇
  1998年   43篇
  1997年   42篇
  1996年   46篇
  1995年   40篇
  1994年   38篇
  1993年   34篇
  1992年   37篇
  1991年   20篇
  1990年   26篇
  1989年   13篇
  1988年   13篇
  1987年   27篇
  1986年   15篇
  1985年   28篇
  1984年   13篇
  1983年   6篇
  1982年   12篇
  1981年   20篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1973年   6篇
  1964年   4篇
排序方式: 共有4966条查询结果,搜索用时 0 毫秒
91.
92.
The high proportion of seed coat of legume lupins results in big milling lose during kernel flour production, though the seed coat could be value-added as human food. The physicochemical and nutritional properties and antioxidant capacities of seed coats of six Australian sweet lupin cultivars grown at two locations were evaluated. Results showed that genotype, environment and their interaction were significant for seed coat percentage, proximate composition, dietary fibre content, polyphenols and antioxidant capacities. Strong correlations between seed coat lightness and polyphenol content were found. A comparison using multivariate analysis of the seed coat properties showed clear separation based on growing sites. This study indicates the enormous potential of Australian sweet lupin seed coat as an ‘antioxidant dietary fibre’ food source. The results could also benefit to breed varieties with desirable levels of nutrients and phytochemicals.  相似文献   
93.
The aim of this study was to evaluate the suitability of Methylene Blue (MB) and Vitamin B12 (Vit-B12) as water soluble inner aqueous phase (W1) markers for measuring the encapsulation efficiency and stability of water-in-oil-in-water (W1/O/W2) double emulsions stabilized by sodium caseinate (NaCN). The encapsulation efficiency and stability were determined by centrifugation of the double emulsion to separate the cream phase (W1/O) and the outer aqueous phase (W2) and measuring the concentration of marker in W2 by absorbance spectrophotometry. To validate this method the marker concentration measurable and the stability of the marker in W2 were measured. Both markers could be accurately measured in W2 and there was no change in the concentration of marker on storage of a W2 solution for 7 days at 45 °C. The recovery yields of MB and Vit-B12 in the recovered W2 of an oil-in-water (O/W2) emulsion, determined using the procedure normally used for measuring encapsulation efficiency and stability, were 78% and 99%, respectively, and 52 and 100%, respectively. Double emulsions had encapsulation efficiency of 61.9 ± 21.4% and 16.6 ± 1.1% and encapsulation stability of 62.0 ± 22.6% and 10.7 ± 0.7% for MB and Vit-B12, respectively. Recovery yield and encapsulation efficiency/stability data for MB indicate that it is not a suitable marker for measuring the encapsulation properties of NaCN stabilized double emulsions while similar data for Vit-B12 indicate that it is a suitable marker for studying the encapsulation properties of double emulsions stabilized with NaCN. Methods used in other studies to measure encapsulation properties of double emulsions are discussed in light of the results obtained in this study.  相似文献   
94.
No other environmental issue today is the subject of more discussion, debate, and media coverage than human-induced climate change, which is supposedly caused by increasing emissions of carbon dioxide (CO2) from the combustion of fossil fuels. These debates cover everything from basic questions of physical measurement—How has the earth's climate changed over time? How may the climate change in the future because of increased CO2 concentrations in the atmosphere?—to debates over how increased CO2 emissions will affect the economic well-being of future generations.  相似文献   
95.
The present contribution aims at determining the impact of modifying the properties of the absorber/buffer layer interface on the electrical performance of Cu2ZnSnSe4 (CZTSe) thin‐film solar cells, by using a Cd2+ partial electrolyte (Cd PE) treatment of the absorber before the buffer layer deposition. In this work, CZTSe/CdS solar cells with and without Cd PE treatment were compared with their respective Cu(In,Ga)Se2 (CIGSe)/CdS references. The Cd PE treatment was performed in a chemical bath for 7 min at 70 °C using a basic solution of cadmium acetate. X‐ray photoemission spectroscopy measurements have revealed the presence of Cd at the absorber surface after the treatment. The solar cells were characterized using current density–voltage (J–V), external quantum efficiency, and drive‐level capacitance profiling measurements. For the CZTSe‐based devices, the fill factor increased from 57.7% to 64.0% when using the Cd PE treatment, leading to the improvement of the efficiency (η) from 8.3% to 9.0% for the best solar cells. Similar observations were made on the CIGSe solar cell reference. This effect comes from a considerable reduction of the series resistance (RS) of the dark and light J–V, as determined using the one‐diode model. The crossover effect between dark and light J–V curves is also significantly reduced by Cd PE treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
96.
Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5% in 2018. This creates a major public health problem, due to increases in long-term complications of diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atherosclerotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes. Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout. This triggers a cascade leading to islet cell destruction and the long-term complications of type 2 diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become irregular. This has been treated by the precise administration of insulin more physiologically. There is consistent evidence that this treatment modality can reverse the diabetes-associated complications of neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion, physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential, and likely cost benefits.  相似文献   
97.
1. Background The use of engineering tools, design, research, and thinking to create environments and capabilities whereby individuals who are currently under-e...  相似文献   
98.
White spruce (Picea glauca) emits monoterpenes that function as defensive signals and weapons after herbivore attack. We assessed the effects of drought and methyl jasmonate (MeJA) treatment, used as a proxy for herbivory, on monoterpenes and other isoprenoids in P. glauca. The emission of monoterpenes was significantly increased after MeJA treatment compared to the control, but drought suppressed the MeJA-induced increase. The composition of the emitted blend was altered strongly by stress, with drought increasing the proportion of oxygenated compounds and MeJA increasing the proportion of induced compounds such as linalool and (E)-β-ocimene. In contrast, no treatment had any significant effect on the levels of stored monoterpenes and diterpenes. Among other MEP pathway-derived isoprenoids, MeJA treatment decreased chlorophyll levels by 40%, but had no effect on carotenoids, while drought stress had no impact on either of these pigment classes. Of the three described spruce genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS) catalyzing the first step of the MEP pathway, the expression of only one, DXS2B, was affected by our treatments, being increased by MeJA and decreased by drought. These findings show the sensitivity of monoterpene emission to biotic and abiotic stress regimes, and the mediation of the response by DXS genes.  相似文献   
99.
Extracellular vesicles (EVs) are important for intercellular signalling in multi-cellular organisms. However, the role of mature transfer RNAs (tRNAs) and tRNA fragments in EVs has yet to be characterised. This systematic review aimed to identify up-to-date literature on tRNAs present within human EVs and explores their potential clinical significance in health and disease. A comprehensive and systematic literature search was performed, and the study was conducted in accordance with PRISMA guidelines. Electronic databases MEDLINE and EMBASE were searched up until 1 January 2022. From 685 papers, 60 studies were identified for analysis. The majority of papers reviewed focussed on the role of EV tRNAs in cancers (31.7%), with numerous other conditions represented. Blood and cell lines were the most common EV sources, representing 85.9% of protocols used. EV isolation methods included most known methods, precipitation being the most common (49.3%). The proportion of EV tRNAs was highly variable, ranging between 0.04% to >95% depending on tissue source. EV tRNAs are present in a multitude of sources and show promise as disease markers in breast cancer, gastrointestinal cancers, and other diseases. EV tRNA research is an emerging field, with increasing numbers of papers highlighting novel methodologies for tRNA and tRNA fragment discovery.  相似文献   
100.
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet–neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet–monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号