首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6076篇
  免费   356篇
  国内免费   21篇
电工技术   125篇
综合类   4篇
化学工业   1398篇
金属工艺   239篇
机械仪表   397篇
建筑科学   114篇
矿业工程   2篇
能源动力   336篇
轻工业   513篇
水利工程   23篇
石油天然气   6篇
武器工业   2篇
无线电   952篇
一般工业技术   1443篇
冶金工业   303篇
原子能技术   65篇
自动化技术   531篇
  2024年   6篇
  2023年   75篇
  2022年   99篇
  2021年   167篇
  2020年   154篇
  2019年   140篇
  2018年   190篇
  2017年   185篇
  2016年   211篇
  2015年   158篇
  2014年   267篇
  2013年   360篇
  2012年   448篇
  2011年   512篇
  2010年   356篇
  2009年   409篇
  2008年   372篇
  2007年   307篇
  2006年   231篇
  2005年   224篇
  2004年   184篇
  2003年   163篇
  2002年   166篇
  2001年   133篇
  2000年   133篇
  1999年   108篇
  1998年   143篇
  1997年   120篇
  1996年   86篇
  1995年   72篇
  1994年   46篇
  1993年   46篇
  1992年   28篇
  1991年   18篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1977年   5篇
  1976年   6篇
  1975年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有6453条查询结果,搜索用时 0 毫秒
51.
We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of “procedural representative triangles” to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of “orphan sets” to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.  相似文献   
52.
53.
Conventionally, lifetests of semiconductor laser diodes usually involved operating the devices continuously at either constant power output or drive current, with periodic recording of their characteristics. In this paper, some effects arising from interrupted lifetest of 1.3 m GaInAsP-InP inverted-rib laser diodes are reported. This unconventional lifetest method involves constant power biasing at 4 mW/facet and 8 mW/facet respectively at 50°C, followed by a period during which the lifetest is interrupted and the devices left unbiased at room temperature. Subsequently, the devices were put back on constant power biasing at 50°C. Among a number of parameters, pronounced reduction in the threshold current, current for 4 mW/facet and 8 mW/facet were observed, indicating strong recovery effects commencing from the time when the life-test was interrupted. Redistribution of mobile defects in the cladding layer is postulated to be the cause of the degradation recovery, and the data supports the occurrence of an aging-current dependent defect annihilation mechanism. Such recovery effects have so far been observed to occur only in the GaInAsP-InP inverted-rib devices.  相似文献   
54.
We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13 μm–0.16 μm to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.  相似文献   
55.
The transition mechanism in high temperature cuprate superconductors is an outstanding puzzle. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate superconductors (Lee, J. Supercond. Nov. Magn. 23(3), 333; 2009) is re-examined to provide a viable mechanism for superconductivity in these cuprates via an unusual lattice vibration in which an electron is predominantly interacting with a non-linear Q 2 mode of the oxygen clusters in the CuO2 planes. It is shown that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. As a follow-up of Lee (J. Supercond. Nov. Magn. 23(3), 333; 2009), in this paper, we report detailed derivation of the superconducting gap equation and numerical solutions for the transition temperature as inherently integrated into the so-called extended Hubbard model (EHM). A unique feature in the EHM is that the transition temperature has an inherent k-dependence. In addition, superconducting gap solutions are restrained to specific regions in the first Brillouin zone (1BZ). It is very feasible to expect that the EHM naturally inherits a huge parameter space in which experimentally measured results, such as the well-known superconducting dome and the phase diagram from electronic Raman scattering (Sacuto et al., Rep. Prog. Phys. 76(2), 022502; 2013) can be accommodated. The EHM model hence offers a viable venue to search for or confirm any signature in k-point-sensitive experimental measurements.  相似文献   
56.
57.
58.
The electromigration behavior of low-melting temperature Sn-58Bi (in wt%) solder joints was investigated with a high current density between 3 and 4.5 × 103 A/cm2 between 80 and 110 °C. In order to analyze the impact of various substrate metallizations on the electromigration performance of the Sn-58Bi joint, we used representative substrate metallizations including electroless nickel immersion gold (ENIG), electroless nickel electroless palladium immersion gold (ENEPIG), and organic solderability preservatives (OSP). As the applied current density increased, the time to failure (TTF) for electromigration decreased regardless of the temperature or substrate metallizations. In addition, the TTF slightly decreased with increasing temperature. The substrate metallization significantly affected the TTF for the electromigration behavior of the Sn-58Bi solder joints. The substrate metallizations for electromigration performance of the Sn-58Bi solder are ranked in the following order: OSP-Cu, ENEPIG, and ENIG. Due to the polarity effect, current stressing enhanced the fast growth of intermetallic compounds (IMCs) at the anode interface. Cracks occurred at the Ni3Sn4 + Ni3P IMC/Cu interfaces on the cathode sides in the Sn-58Bi/ENIG joint and the Sn-58Bi/ENEPIG joint; this was caused by the complete consumption of the Ni(P) layer. Alternatively, failure occurred via deformation of the bulk solder in the Sn-58Bi/OSP-Cu joint. The experimental results confirmed that the electromigration reliability of the Sn-58Bi/OSP-Cu joint was superior to those of the Sn-58Bi/ENIG or Sn-58Bi/ENEPIG joints.  相似文献   
59.
60.
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN),  NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h−1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2GCN significantly decreases the activation energy barrier for PO ring-opening from 50–60 to 4.903 kcal mol−1. Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while  NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h−1 of CO2 with PC production of 10.2 ton h−1. Techno-economic assessment profit from Mo2GCN is estimated to be 60.39 million USD year−1 at a catalyst loss rate of 0.01 wt% h−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号