首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   24篇
  国内免费   3篇
电工技术   10篇
综合类   2篇
化学工业   95篇
金属工艺   19篇
机械仪表   13篇
建筑科学   14篇
矿业工程   4篇
能源动力   7篇
轻工业   24篇
水利工程   2篇
无线电   46篇
一般工业技术   73篇
冶金工业   29篇
原子能技术   6篇
自动化技术   98篇
  2023年   8篇
  2022年   7篇
  2021年   14篇
  2020年   9篇
  2019年   10篇
  2018年   14篇
  2017年   11篇
  2016年   13篇
  2015年   13篇
  2014年   16篇
  2013年   18篇
  2012年   30篇
  2011年   35篇
  2010年   16篇
  2009年   15篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   22篇
  2004年   21篇
  2003年   14篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
101.
The lipid components of three Cameroonian seed oils, ke tchock (Aframomum arundinaceum), njangsa (Ricinodendron heudelotii) and calabash nutmeg (Monodora myristica), have been investigated. Gas chromatography (GC)–mass spectrometry (MS) fatty acid (FA) analysis showed M. myristica seed oil to be dominated by linoleic (49.29%) and oleic (37.17%) acids; R. heudelotii was mainly linoleic (58.73%), followed by stearic (15.00%) and oleic (14.21%) acids; A. arundinaceum was predominantly oleic (65.76%) and palmitic (20.36%) acids. Electrospray ionization (ESI)-Fourier transform ion cyclotron resonance (FTICR)-MS analysis showed seven major triacylglycerol (TAG) classes for M. myristica, with C54:5, C54:4 and C54:6 dominating. R. heudelotii had eight major TAG classes with C54:8, C54:7 and C54:6 being most abundant. A. arundinaceum also had eight major TAG classes with C52:2, C54:3 and C50:2 dominating. 13C nuclear magnetic resonance (NMR) analysis of the TAGs showed that both sn-1,3 and sn-2 positions were predominantly occupied by linoleoyl and oleoyl chains. High-performance liquid chromatography (HPLC) fluorescence detector (FLD) analysis showed that M. myristica contained only α- and β-tocopherols (195.40 and 73.95 μg/g, respectively), R. heudelotii contained mainly γ-tocopherol (289.40 μg/g), and A. arundinaceum had mainly γ- and β-tocopherols (236.78 and 124.93 μg/g, respectively). GC–MS analysis of the unsaponifiable matter showed that β-sitosterol was the most abundant phytosterol in all three seed oils. The absolute amounts of 4-desmethylsterols were 196.15, 608.71 and 362.15 μg/g for M. myristica, R. heudelotii and A. arundinaceum seed oils, respectively. These compositional and structural studies provide justification for the use of all three seed oils in food products.  相似文献   
102.
Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.  相似文献   
103.
Magnesium is a prospective material to save weight and fuel due to its low density and its high specific strength. Nevertheless corrosion and wear resistance are weak so that the surface has to be protected. Previous studies of the authors pointed out the potential of TiMgAlN PVD-coatings for surface protection of Mg-alloys. Within the presented study, the chemical, structural and electrochemical properties of TiMgAlN based PVD coating materials were examined entirely. Therefore, coatings of different compositions were deposited onto the magnesium alloy AZ31 and on glass substrates. Glass substrates were used to examine the electrochemical properties of the coating materials without any substrate influence. The magnesium content in the coatings varied between 1 at.% and 60 at.%. Increasing Mg content in the coatings improves mechanical and electrochemical properties, thus making TiMgAlN prospective candidates to protect magnesium against wear and corrosion. Beyond this, addition of magnesium leads to a densification of the coating microstructure.  相似文献   
104.
The effect of power input, fluid phase viscosity and solids loading on the mechanical stress on suspended particles was examined. Experiments were carried out in an airlift loop reactor and a bubble column operated in two- and three-phase mode. The disintegration of a shear sensitive floc system was observed with an optical in-line particle system analyser and information about the mechanical stress was obtained by means of mathematical analysis of the raw data. The volumetric power input has been derived to be the governing factor and a linear dependence between volumetric power input and resulting mechanical stress was observed. The addition of a solid phase leads to a drastical change of mechanical stress on the particles with a dominating increase of the stress at high solids loadings. Likewise higher fluid phase viscosity leads to higher mechanical stress on the floc system.  相似文献   
105.
The hydrolysis reaction of 1,1,2,2-tetrachloroethane (TeCA) is significantly enhanced by sorption on activated carbon. TeCA is quantitatively transformed into trichloroethene (TCE) at moderate pH values. This transformation is exploited as the basic step of a site-adapted groundwater-cleanup technology. The volatility of TCE is a factor of 23 higher than that of TeCA such that the partially dehydrochlorinated product can be easily stripped out of the groundwater flow. The base-mediated and the neutral dehydrochlorination of TeCA were studied as a function of temperature and pH value in batch and column experiments. Surprisingly, it was found that despite high loadings of the sorbent with TeCA and TCE (≥20 wt.%) the TeCA remains available for the hydrolysis reaction.  相似文献   
106.
In this publication, several stainless steel microstructure reactors specially designed to obtain rapid and periodic temperature changes are presented. Different microstructure reactor designs have been manufactured and tested for their thermal behaviour and equally by running a test reaction under stationary and non-stationary temperature conditions. The devices were continuously electrically heated and periodically cooled by a deionized water flow. The objective of the experimental measurements was to demonstrate that non-stationary temperature conditions may lead to an increase in the reaction rate compared to the stationary conditions. The heterogeneously catalysed oxidation of CO was chosen as the test reaction. The catalyst used was a dispersion of platinum on a porous alumina support generated by sol-gel technology. The experiments realized under non-stationary temperature conditions with a temperature oscillation amplitude of 41 K and a period duration of 21 s show an increase in the mean CO2 concentration of a factor 1.72 compared to the mean concentration under quasi-stationary temperature conditions. The simulations of a simple monomolecular reaction under non-stationary temperature conditions indicate that the presence of a transitional surface coverage generated by the temperature oscillations may be a possible explanation for the observed phenomenon.  相似文献   
107.
We have incorporated microspheres, from 50 to 80 μm in diameter, of periodic mesoporous organosilica (inner surfaces up to 1,000 m2/g and pore sizes in the nanometre range) with two types of organic functionalities (benzene and ethane bridges, respectively) inside microstructured channels (each 200 μm wide and 100 μm deep) and, exemplarily, monitored by Raman microscopy (Raman spectroscopy through microscope optics) that the temperature characteristics of the adsorption–desorption equilibria of benzene and ethanol vary significantly with the type of organic functionality of the microspheres and the pore morphology. The integration of this class of nanostructured material into devices by means of microchannels is a promising novel approach to, among others, substance separation in analytics, micro process engineering, and micro chemistry.  相似文献   
108.
109.
110.
Post-ischemic left ventricular (LV) remodeling and its hypothetical prevention by repeated remote ischemic conditioning (rRIC) in male Sprague–Dawley rats were studied. Myocardial infarction (MI) was evoked by permanent ligation of the left anterior descending coronary artery (LAD), and myocardial characteristics were tested in the infarcted anterior and non-infarcted inferior LV regions four and/or six weeks later. rRIC was induced by three cycles of five-minute-long unilateral hind limb ischemia and five minutes of reperfusion on a daily basis for a period of two weeks starting four weeks after LAD occlusion. Sham operated animals served as controls. Echocardiographic examinations and invasive hemodynamic measurements revealed distinct changes in LV systolic function between four and six weeks after MI induction in the absence of rRIC (i.e., LV ejection fraction (LVEF) decreased from 52.8 ± 2.1% to 50 ± 1.6%, mean ± SEM, p < 0.05) and in the presence of rRIC (i.e., LVEF increased from 48.2 ± 4.8% to 55.2 ± 4.1%, p < 0.05). Angiotensin-converting enzyme (ACE) activity was about five times higher in the anterior LV wall at six weeks than that in sham animals. Angiotensin-converting enzyme 2 (ACE2) activity roughly doubled in post-ischemic LVs. These increases in ACE and ACE2 activities were effectively mitigated by rRIC. Ca2+-sensitivities of force production (pCa50) of LV permeabilized cardiomyocytes were increased at six weeks after MI induction together with hypophosphorylation of 1) cardiac troponin I (cTnI) in both LV regions, and 2) cardiac myosin-binding protein C (cMyBP-C) in the anterior wall. rRIC normalized pCa50, cTnI and cMyBP-C phosphorylations. Taken together, post-ischemic LV remodeling involves region-specific alterations in ACE and ACE2 activities together with changes in cardiomyocyte myofilament protein phosphorylation and function. rRIC has the potential to prevent these alterations and to improve LV performance following MI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号