首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6854篇
  免费   384篇
  国内免费   20篇
电工技术   83篇
综合类   9篇
化学工业   1482篇
金属工艺   148篇
机械仪表   149篇
建筑科学   250篇
矿业工程   10篇
能源动力   194篇
轻工业   590篇
水利工程   56篇
石油天然气   28篇
无线电   1005篇
一般工业技术   1224篇
冶金工业   865篇
原子能技术   32篇
自动化技术   1133篇
  2024年   10篇
  2023年   112篇
  2022年   197篇
  2021年   336篇
  2020年   243篇
  2019年   226篇
  2018年   277篇
  2017年   230篇
  2016年   322篇
  2015年   217篇
  2014年   281篇
  2013年   453篇
  2012年   368篇
  2011年   453篇
  2010年   344篇
  2009年   310篇
  2008年   340篇
  2007年   299篇
  2006年   212篇
  2005年   193篇
  2004年   159篇
  2003年   129篇
  2002年   123篇
  2001年   123篇
  2000年   80篇
  1999年   90篇
  1998年   218篇
  1997年   114篇
  1996年   101篇
  1995年   87篇
  1994年   66篇
  1993年   86篇
  1992年   54篇
  1991年   38篇
  1990年   38篇
  1989年   40篇
  1988年   25篇
  1987年   33篇
  1986年   28篇
  1985年   27篇
  1984年   29篇
  1983年   19篇
  1982年   16篇
  1981年   14篇
  1980年   14篇
  1979年   12篇
  1978年   13篇
  1977年   15篇
  1976年   9篇
  1973年   8篇
排序方式: 共有7258条查询结果,搜索用时 15 毫秒
161.
Membrane decorated with biocides is an effective way to suppress biofilm growth. However, their immediate biocidal effect usually suffers from a significant decline due to the irreversible consumption of the biocides. Here, a smart nanofiltration membrane is reported with rechargeable antibacterial capability that is fabricated by a facile interfacial polymerization via 3-aminophenylboronic acid and trimesoyl chloride on a polysulfone substrate. Biocides bearing diol groups can be grafted onto the membrane surface under neutral/alkaline condition and then released from the surface under acidic environment, due to the pH-responsive feature of boronate ester complexes. The resultant membrane exhibits integrated properties of fast bacterial inactivating efficiency, rechargeable antibacterial capability, and impressive stability. In addition, the achieved membrane shows remarkable separation efficiency to dye/monovalent salt system. The successful fabrication of the membrane with rechargeable anti-bacterial property provides new insights into the development of pH-responsive and sustainable antibacterial membranes.  相似文献   
162.
Development of multifunctional electrocatalysts with high efficiency and stability is of great interest in recent energy conversion technologies. Herein, a novel heteroelectrocatalyst of molecular iron complex (FeMC)-carbide MXene (Mo2TiC2Tx) uniformly embedded in a 3D graphene-based hierarchical network (GrH) is rationally designed. The coexistence of FeMC and MXene with their unique interactions triggers optimum electronic properties, rich multiple active sites, and favorite free adsorption energy for excellent trifunctional catalytic activities. Meanwhile, the highly porous GrH effectively promotes a multichannel architecture for charge transfer and gas/ion diffusion to improve stability. Therefore, the FeMC–MXene/GrH results in superb performances towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The practical tests indicate that Zn/Al–air batteries derived from FeMC–MXene/GrH cathodic electrodes produce high power densities of 165.6 and 172.7 mW cm−2, respectively. Impressively, the liquid-state Zn–air battery delivers excellent cycling stability of over 1100 h. In addition, the alkaline water electrolyzer induces a low cell voltage of 1.55 V at 10 mA cm−2 and 1.86 V at 0.4 A cm−2 in 30 wt.% KOH at 80 °C, surpassing recent reports. The achievements suggest an exciting multifunctional electrocatalyst for electrochemical energy applications.  相似文献   
163.
Since the 1950s, 8.3 billion tonnes (Bt) of virgin plastics have been produced, of which around 5 Bt have accumulated as waste in oceans and other natural environments, posing severe threats to entire ecosystems. The need for sustainable bio-based alternatives to traditional petroleum-derived plastics is evident. Bioplastics produced from unprocessed biological materials have thus far suffered from heterogeneous and non-cohesive morphologies, which lead to weak mechanical properties and lack of processability, hindering their industrial integration. Here, a fast, simple, and scalable process is presented to transform raw microalgae into a self-bonded, recyclable, and backyard-compostable bioplastic with attractive mechanical properties surpassing those of other biobased plastics such as thermoplastic starch. Upon hot-pressing, the abundant and photosynthetic algae spirulina forms cohesive bioplastics with flexural modulus and strength in the range 3–5 GPa and 25.5–57 MPa, respectively, depending on pre-processing conditions and the addition of nanofillers. The machinability of these bioplastics, along with self-extinguishing properties, make them promising candidates for consumer plastics. Mechanical recycling and fast biodegradation in soil are demonstrated as end-of-life options. Finally, the environmental impacts are discussed in terms of global warming potential, highlighting the benefits of using a carbon-negative feedstock such as spirulina to fabricate plastics.  相似文献   
164.
Clustering is a crucial method for deciphering data structure and producing new information. Due to its significance in revealing fundamental connections between the human brain and events, it is essential to utilize clustering for cognitive research. Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties. Noisy data can lead to incorrect object recognition and inference. This research aims to innovate a novel clustering approach, named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering (PNTS3FCM), to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set (PFS) and Neutrosophic Set (NS). Our contribution is to propose a new optimization model with four essential components: clustering, outlier removal, safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data. The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods, standard Picture fuzzy clustering (FC-PFS) and Confidence-weighted safe semi-supervised clustering (CS3FCM) on benchmark UCI datasets. The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time.  相似文献   
165.
Artificial Life and Robotics - Honey bees (Apis mellifera L.) are social insects that makes frequent use of volatile pheromone signals to collectively navigate unpredictable and unknown...  相似文献   
166.

Wireless sensor networks (WSN) is considered as one of the exploring technology for its deployment of the massive number of dedicated sensor nodes which sense the environment and collect the data. The collected data are sent to the sink node through the intermediate nodes. Since the sensors node data are exposed to the internet, there is a possibility of vulnerability in the WSN. The common attack that affects most of the sensor nodes is the Distributed Denial of Services (DDoS) attack. This paper aims to identify the DDoS (Flooding) attack quickly and to recover the data of sensor nodes using the fuzzy logic mechanism. Fuzzy based DDoS attack Detection and Recovery mechanism (FBDR) uses type 1 fuzzy logic to detect the occurrence of DDoS attack in a node. Similarly fuzzy- type 2 is used for the recovery of data from the DDoS attack. Both the type 1 fuzzy-based rule and type 2 fuzzy-based rule perform well in terms of identifying the DDoS attack and recover the data under attack. It also helps to reduce the energy consumption of each node and improves the lifetime of the network. The proposed FBDR scheme is also compared with other related existing schemes. The proposed method saves energy usage by up to 20% compared with the related schemes. The experimental results represent that the FBDR method works better than other similar schemes.

  相似文献   
167.
Engineering with Computers - Structural health monitoring (SHM) and Non-destructive Damage Identification (NDI) using responses of structures under dynamic excitation have an imperative role in the...  相似文献   
168.
Stochastic demand is an important factor that heavily affects production planning. It influences activities such as purchasing, manufacturing, and selling, and quick adaption is required. In production planning, for reasons such as reducing costs and obtaining supplier discounts, many decisions must be made in the initial stage when demand has not been realized. The effects of non-optimal decisions will propagate to later stages, which can lead to losses due to overstocks or out-of-stocks. To find the optimal solutions for the initial and later stage regarding demand realization, this study proposes a stochastic two-stage linear programming model for a multi-supplier, multi-material, and multi-product purchasing and production planning process. The objective function is the expected total cost after two stages, and the results include detailed plans for purchasing and production in each demand scenario. Small-scale problems are solved through a deterministic equivalent transformation technique. To solve the problems in the large scale, an algorithm combining metaheuristic and sample average approximation is suggested. This algorithm can be implemented in parallel to utilize the power of the solver. The algorithm based on the observation that if the remaining quantity of materials and number of units of products at the end of the initial stage are given, then the problems of the first and second stages can be decomposed.  相似文献   
169.
Huynh  Tuan-Tu  Lin  Chih-Min  Le  Nguyen-Quoc-Khanh  Vu  Mai The  Nguyen  Ngoc Phi  Chao  Fei 《Applied Intelligence》2022,52(3):2720-2744

This study aims to propose a more efficient hybrid algorithm to achieve favorable control performance for uncertain nonlinear systems. The proposed algorithm comprises a dual function-link network-based multilayer wavelet fuzzy brain emotional controller and a sign(.) functional compensator. The proposed algorithm estimates the judgment and emotion of a brain that includes two fuzzy inference systems for the amygdala network and the prefrontal cortex network via using a dual-function-link network and three sub-structures. Three sub-structures are a dual-function-link network, an amygdala network, and a prefrontal cortex network. Particularly, the dual-function-link network is used to adjust the amygdala and orbitofrontal weights separately so that the proposed algorithm can efficiently reduce the tracking error, follow the reference signal well, and achieve good performance. A Lyapunov stability function is used to determine the adaptive laws, which are used to efficiently tune the system parameters online. Simulation and experimental studies for an antilock braking system and a magnetic levitation system are presented to verify the effectiveness and advantage of the proposed algorithm.

  相似文献   
170.
Nguyen  Thao  Gopalan  Nakul  Patel  Roma  Corsaro  Matt  Pavlick  Ellie  Tellex  Stefanie 《Autonomous Robots》2022,46(1):83-98
Autonomous Robots - Natural language object retrieval is a highly useful yet challenging task for robots in human-centric environments. Previous work has primarily focused on commands specifying...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号