首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377396篇
  免费   26600篇
  国内免费   14586篇
电工技术   19571篇
技术理论   16篇
综合类   21162篇
化学工业   59211篇
金属工艺   21168篇
机械仪表   21430篇
建筑科学   26255篇
矿业工程   8645篇
能源动力   9835篇
轻工业   22823篇
水利工程   6915篇
石油天然气   15735篇
武器工业   2585篇
无线电   45268篇
一般工业技术   51270篇
冶金工业   17092篇
原子能技术   3783篇
自动化技术   65818篇
  2024年   1292篇
  2023年   4416篇
  2022年   8333篇
  2021年   11464篇
  2020年   8462篇
  2019年   7175篇
  2018年   21131篇
  2017年   21433篇
  2016年   17561篇
  2015年   11809篇
  2014年   14856篇
  2013年   18414篇
  2012年   22289篇
  2011年   30480篇
  2010年   26756篇
  2009年   23727篇
  2008年   24418篇
  2007年   24822篇
  2006年   17414篇
  2005年   15872篇
  2004年   11406篇
  2003年   9960篇
  2002年   8800篇
  2001年   7399篇
  2000年   7051篇
  1999年   7068篇
  1998年   6149篇
  1997年   5058篇
  1996年   4539篇
  1995年   3780篇
  1994年   3133篇
  1993年   2451篇
  1992年   1897篇
  1991年   1447篇
  1990年   1124篇
  1989年   980篇
  1988年   753篇
  1987年   548篇
  1986年   446篇
  1985年   352篇
  1984年   230篇
  1983年   223篇
  1982年   181篇
  1981年   163篇
  1980年   144篇
  1979年   104篇
  1978年   66篇
  1977年   71篇
  1976年   80篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Wang  Chen  Bao  Chun-Hui  Wu  Wan-Yu  Hsu  Chia-Hsun  Zhao  Ming-Jie  Zhang  Xiao-Ying  Lien  Shui-Yang  Zhu  Wen-Zhang 《Journal of Materials Science》2022,57(26):12341-12355
Journal of Materials Science - Molybdenum oxide (MoOx) films had been grown by using plasma-enhanced atomic layer deposition (PEALD) with Mo(CO)6 precursor and O2 plasma reactant in a substrate...  相似文献   
12.
13.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
14.
Hydraulic fracturing with slickwater is a field-proven stimulation technology used in tight reservoirs. Because of the high pumping rate associated with slickwater fracturing, drag reduction (DR) is critical in minimizing pressure drop and the success of oilfield operations. In this paper, a new type of drag reducer (SPR) was synthesized with acrylamide and 12-allyloxydodecyl acid sodium, and its drag reduction performance was evaluated. The results showed that the new drag reducer features low molecular weight, fast-dissolving rate and low interfacial tension. The algorithm of estimating the drag reduction rate of non-Newtonian fluid SPR was proposed and validated. Empirical or semianalytical models for estimating the friction ratio (σ) or friction factor (λ or f) were used to simulate the turbulence behavior of the SPR drag reducer under different Reynolds numbers (Re). The modified Virk's correlation could accurately model the turbulent behavior of the SPR drag reducer. A unified calculation formula was established in this study for different pipe diameters.  相似文献   
15.
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.  相似文献   
16.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
17.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
18.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
19.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
20.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号