首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   7篇
  国内免费   1篇
电工技术   4篇
化学工业   44篇
金属工艺   2篇
机械仪表   7篇
建筑科学   11篇
能源动力   16篇
轻工业   29篇
水利工程   6篇
石油天然气   2篇
无线电   34篇
一般工业技术   47篇
冶金工业   16篇
原子能技术   3篇
自动化技术   45篇
  2024年   1篇
  2023年   8篇
  2022年   6篇
  2021年   18篇
  2020年   8篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   20篇
  2015年   7篇
  2014年   18篇
  2013年   14篇
  2012年   26篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   10篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   3篇
  1980年   1篇
  1978年   3篇
排序方式: 共有266条查询结果,搜索用时 31 毫秒
41.
In the first part of this two-part paper, the effect of increasing Ce in solid solution on the recrystallization and texture evolution of four Mg–Zn–Ce sheets was investigated in the as-deformed and annealed state. In this second part, the effect of rolling speed on the microstructure and texture development of these alloys is evaluated. The effect of rolling speed on the recrystallization and texture evolution of four Mg–Zn–Ce sheets was investigated at as-deformed and different stages of annealing. The deformation microstructure was obtained through two stages that can be characterised as rough rolling and finish rolling. To study the effect of finish rolling temperature, one rolling pass with a 65 % reduction in thickness was performed at 300 and 450 °C and at rolling speeds of 15 and 1000 m/min. The results showed that by increasing the rolling speed, more secondary and compression twins were activated, which leads to the formation of more numerous local shear bands and a more uniform microstructure. Annealing secondary twins (S-twins) and their vicinity were observed to be the preferential sites for nucleation, and it seems that recrystallization on S-twins contributes to basal texture weakening. Therefore, an increasing number of such twins increase the texture weakening. In this way, the combination of these RE additions and HSR resulted in a weaker deformed and annealed texture.  相似文献   
42.
43.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   
44.
This paper presents a face detection method which makes use of a modified mixture of experts. In order to improve the face detection accuracy, a novel structure is introduced which uses the multilayer perceptrons (MLPs), as expert and gating networks, and employs a new learning algorithm to adapt with the MLPs. We call this model Mixture of MLP Experts (MMLPE). Experiments using images from the CMU-130 test set demonstrate the robustness of our method in detecting faces with wide variations in pose, facial expression, illumination, and complex backgrounds. The MMLPE produces promising high detection rate of 98.8% with ten false positives.  相似文献   
45.
46.
Imaging-based inspection methods are increasingly being employed for crack detection in concrete structures, because they provide quantitative information compared to inspections based solely on conventional visual approaches. However, efficient image analysis methods are needed. This study proposes the application of the grey level co-occurrence matrix (GLCM) texture analysis approach and an artificial neural network (ANN) classifier to obtain surface damage information, such as the total amount of superficial cracking, as well as the total length, and range of crack widths. These methods were applied to thermographic, visual colour and greyscale images of concrete blocks from CANMET that were exposed outdoors for ten years, as well as slabs from GRAI that were kept indoors, all specimens exhibiting various levels of alkali-aggregate reaction (AAR) damage. Results of the classifications show that the greyscale imagery performed fairly well, with an overall classification accuracy range of 72.3–76.5% for the CANMET blocks, and 68.7–75.3% for the GRAI slabs. Classifications using the colour imagery were slightly better than the greyscale imagery, with accuracies ranging from 71.4% to 75.2% for CANMET blocks and 70.9–72.0% for the GRAI slabs. The thermographic imagery, however, produced the highest overall classification accuracies, which range from 73.1% to 76.3% for the CANMET blocks and 74.2–76.9% for the GRAI slabs. The results show that all three types of imagery are relatively effective in characterizing and quantifying crack damage; however, the infrared thermography produced more accurate results compared to the visual colour, and greyscale images.  相似文献   
47.
改变MOFs材料的中心金属能影响其气体的亲和性和双组份气体的吸附选择性(如比表面积,孔道结构,内部电场等),本文合成并表征了M-DABCO系列(M=Ni, Co, Cu, Zn) MOFs材料。并应用理想吸附溶液理论(Ideal Adsorbed Solution Theory,简称IAST)量化模拟了环境条件下双组分混合气体(组分比CO2:CH4=40%:60%)的吸附选择性。 Ni-DABCO材料具有良好的CO2吸附性能和在环境条件下对CO2/CH4混合气体的吸附选择性。本文通过实验、表征及计算等来讨论中心金属对M-DABCO系列吸附位点的影响。  相似文献   
48.
Glycyrrhiza glabra, Mint, Cuminum cyminum, Lavender and Arctium medicinal are considered as edible plants with therapeutic properties and as medicinal plants in Iran. After extraction process of medicinal plants, residual wastes are not suitable for animal feed and are considered as waste and as an environmental threat. At present there is no proper management of waste of these plants and they are burned or buried. The present study discusses the possibility of biogas production from Glycyrrhiza Glabra Waste (GGW), Mentha Waste (MW), Cuminum Cyminum Waste (CCW), Lavender Waste (LW) and Arctium Waste (AW). 250 g of these plants with TS of 10% were digested in the batch type reactors at the temperature of 35°C. The highest biogas production rate were observed to be 13611 mL and 13471 mL for CCW and GGW (10% TS), respectively. While the maximum methane was related to GGW with a value of 9041 mL (10% TS). The highest specific biogas and methane production were related to CCW with value of 247.4 mL.(g.VS)-1 and 65.1 mL.(g.VS)-1, respectively. As an important result, it was obvious that in lignocellulose materials, it cannot be concluded that the materials with similar ratio of C/N has the similar digestion and biogas production ability.  相似文献   
49.
This paper presents a numerical study on FRP-wrap strengthened reinforced concrete columns subjected to eccentric axial loads using ABAQUS®. For modeling of concrete dilation under non-uniform confinement pressure, a smooth cap plasticity model was combined with concrete damaged plasticity model. This model includes different concrete compaction–dilation behaviors which is pressure-dependent. Proposed model has been calibrated and verified for concrete in number of unconfined and full-wrapped columns under combination of axial force and bending moment. Presented numerical predictions are shown to be in close agreement with existing experimental results. The effect of laminate stacking sequences and column slenderness on strength and ductility of members was examined thoroughly. The results of this study recommend taking fiber angles between zero (circumferential) and 30° can improve ultimate strength and ductility of confined short concrete columns. However, for slender concrete columns the optimum fiber orientation can be set between 15° and 30°.  相似文献   
50.
Biomass has been recognized as a viable source for energy and bio-based chemicals. This study reported furfural production from millet husk via simultaneous hydrolysis and dehydration processes. Effect of reaction variables such as temperature (120–200°C), resident time (15–45 min), and acid concentration (5–10%) was studied using central composite design. Furfural yield (71.55%) was achieved at 184°C, 39 min, and 9% acid concentration. FT-IR spectrum of the produced furfural showed absorption at 1,697 and 2,880 cm?1 indicating a conjugated carbonyl functional group and aldehydic hydrogen. The results revealed that millet husk could be a potential substrate for furfural production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号