首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248716篇
  免费   37173篇
  国内免费   13749篇
电工技术   19658篇
技术理论   8篇
综合类   18096篇
化学工业   45261篇
金属工艺   13543篇
机械仪表   15367篇
建筑科学   19887篇
矿业工程   7259篇
能源动力   7278篇
轻工业   22855篇
水利工程   5600篇
石油天然气   10152篇
武器工业   2650篇
无线电   32345篇
一般工业技术   31892篇
冶金工业   8920篇
原子能技术   2492篇
自动化技术   36375篇
  2024年   1104篇
  2023年   3761篇
  2022年   7516篇
  2021年   10642篇
  2020年   9018篇
  2019年   8702篇
  2018年   9344篇
  2017年   10731篇
  2016年   10237篇
  2015年   13673篇
  2014年   15919篇
  2013年   19262篇
  2012年   19402篇
  2011年   19614篇
  2010年   18517篇
  2009年   17387篇
  2008年   16593篇
  2007年   15780篇
  2006年   14122篇
  2005年   11159篇
  2004年   8204篇
  2003年   7113篇
  2002年   6971篇
  2001年   6086篇
  2000年   4961篇
  1999年   3456篇
  1998年   1943篇
  1997年   1630篇
  1996年   1457篇
  1995年   1266篇
  1994年   986篇
  1993年   648篇
  1992年   533篇
  1991年   375篇
  1990年   315篇
  1989年   264篇
  1988年   179篇
  1987年   124篇
  1986年   127篇
  1985年   57篇
  1984年   50篇
  1983年   33篇
  1982年   44篇
  1981年   52篇
  1980年   56篇
  1979年   36篇
  1977年   17篇
  1976年   19篇
  1959年   17篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
102.
103.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
104.
Cattle access to streams has been linked globally with degradation of stream water quality, driven largely by bank erosion and resultant instream, fine sediment deposition. The majority of evidence on such effects is however based in arid and semiarid regions of the United States and Australia, with few studies relating to cool temperate climates such as Northwest Europe. In this study, “Quorer” resuspendable sediment samples were taken from riffle geomorphic units upstream (control) and at two points downstream (pressure and recovery) of cattle access points in headwater streams in agricultural catchments in Ireland to assess levels of deposited stream sediment. Samples were taken in April/May (2016) prior to the grazing season and in October (2016) at the end of the grazing season. Sites in good‐high ecological status catchments and less than good ecological status catchments were included in the study. Higher levels of sediment were found downstream of cattle access points in both good‐high status and less than good status catchments; however, the impacts of access points were spatially confined to, in most cases, the area immediately downstream of the point of access. There was a strong correlation between deposited sediment mass and organic matter (OM) mass, with levels of OM increasing linearly with deposited sediment mass. Levels of measured sediment were negatively correlated with riparian habitat health (measured using a qualitative habitat assessment). The results of this study highlight the need for measures to prevent cattle access to headwater streams where access points can be many in order to manage local habitat quality and downstream water quality issues.  相似文献   
105.
Incompressible dipping substrata are commonly encountered in engineering practice. Compared to horizontal underlying strata, the inclined underlying stratum increase the risk of collapse of embankments reinforced with columns because it weakens the restraint of the column base. The objective of this study is to investigate the effectiveness of geosynthetics on improving the embankment stability when the underlying stratum is inclined. The influence of geosynthetic tensile stiffness on the ultimate surcharge and failure mechanism is studied. A deep-seated failure with column tilting occurs when the geosynthetic tensile stiffness is low, whereas a lateral sliding occurs when the geosynthetic tensile stiffness is high. To illustrate the contribution of geosynthetics, the distribution of the lateral pressures acting on the columns is analyzed.  相似文献   
106.
江河湖海疏浚工程对于拓展和保障航运安全、促进生态恢复、维护/改善远海岛礁环境具有不可或缺的作用.目前,在绞吸和耙吸疏浚船上,多采用射线密度计及电磁流量计对输泥密度、产量等进行在线计量,并作为实现疏浚系统自动控制的重要参量.由于射线密度计潜在的人员健康、公共安全和环保风险,在一些国家和地区已建立了放射源的有序退出机制.电阻层析成像使用安装于管壁的电极阵列获得管道内流体的电导率分布,进而推导出管道内的泥浆密度,具有无辐射、全场测量及实时可视化的优点.电阻层析成像测量系统经过特殊设计,可适应从内陆淡水到海水的巨大电导率变化.初步测试表明,电阻层析成像测量数据与射线密度计具有良好一致性,具备了作为在线泥浆密度测量的可行性.此外,ERT可提供实时的流动成像,对于提高对疏浚管道监测能力和降低堵管概率具有重要意义.  相似文献   
107.
The electrochemical water splitting to produce H2 in high efficiency with earth-abundant-metal catalysts remains a challenge. Here, we describe a simple “cyclic voltammetry + ageing” protocol at room temperature to activate Ni electrode (AC-Ni/NF) for hydrogen evolution reaction (HER), by which Ni/Ni(OH)2 heterostructure is formed at the surface. In situ Raman spectroscopy reveals the gradual growth of Ni/Ni(OH)2 heterostructure during the first 30 min of the aging treatment and combined with polarization measurements, it suggests a positive relation between the Ni/Ni(OH)2 amount and HER performance of the electrode. The obtained AC-Ni/NF catalyst, with plentiful Ni–Ni(OH)2 interfaces, exhibits remarkable performance towards HER, with the low overpotential of only 30 mV at a H2-evolving current density of 10 mA/cm2 and 153 mV at 100 mA/cm2, as well as a small Tafel slope of 46.8 mV/dec in 1 M KOH electrolyte at ambient temperature. The excellent HER performance of the AC-Ni/NF could be maintained for at least 24 h without obvious decay. Ex situ experiments and in situ electrochemical-Raman spectroscopy along with density functional theory (DFT) calculations reveal that Ni/Ni(OH)2 heterostructure, although partially reduced, can still persist during HER catalysis and it is the Ni–Ni(OH)2 interface reducing the energy barrier of H1 adsorption thus promoting the HER performance.  相似文献   
108.
109.
Among various carbon materials, diamond stands out due to excellent physical and chemical properties. In this work, we designed Dia@SiO2@Ag composites combining diamond micropowder and Ag nanoparticles by a simple chemical method and obtained stable substrate for surface enhanced Raman scattering (SERS) owing to its high surface-to-volume ratio, low density, as well as close bond between diamond and Ag. As-prepared Dia@SiO2@Ag presented high activity to detect crystal violet and rhodamine 6G molecules, which was demonstrated by significantly enhanced SERS spectra and high enhancement factor values (108-109). Moreover, Dia@SiO2@Ag also showed desired sensitivity, which was investigated by detection limit. Therefore, our study provided more theoretical support and broadened the functional applications of diamond, particularly in Raman detection.  相似文献   
110.
Replacement of precious single metal catalysts with cost-effective, highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies. Organic metals were added to the feed as the oil-soluble precursors, and transformed into the catalytic active phases in this work. Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and transmission electron microscopy. The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both model compound and residue. Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system. Results showed that under the test conditions in the article, the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号