首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   32篇
  国内免费   3篇
电工技术   17篇
综合类   1篇
化学工业   147篇
金属工艺   44篇
机械仪表   13篇
建筑科学   4篇
矿业工程   2篇
能源动力   45篇
轻工业   46篇
水利工程   7篇
石油天然气   2篇
无线电   94篇
一般工业技术   169篇
冶金工业   73篇
原子能技术   6篇
自动化技术   88篇
  2024年   3篇
  2023年   10篇
  2022年   14篇
  2021年   27篇
  2020年   20篇
  2019年   20篇
  2018年   23篇
  2017年   32篇
  2016年   35篇
  2015年   23篇
  2014年   21篇
  2013年   48篇
  2012年   38篇
  2011年   50篇
  2010年   36篇
  2009年   30篇
  2008年   46篇
  2007年   30篇
  2006年   31篇
  2005年   16篇
  2004年   15篇
  2003年   18篇
  2002年   10篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   17篇
  1997年   21篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   11篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1976年   7篇
  1975年   4篇
  1972年   1篇
  1929年   1篇
排序方式: 共有758条查询结果,搜索用时 15 毫秒
21.
An axisymmetric model is developed to study laser drilling process under a single pulse as well as repetitive laser pulse. The laser pulse irradiated on the surface of the workpiece is volumetric and Gaussian in nature. The laser irradiated surface is subjected to convective‐radiative boundary condition while rest of the surfaces are insulated. Finite volume method is used to discretize the domain under consideration. The resulting algebraic equations are solved with the help of the tridiagonal matrix algorithm to find temperature distribution throughout the domain. The enthalpy‐porosity method is used to track the solid‐liquid interface generated during the laser melting process. Convective heat transfer occurs inside the generated melt pool. The current model is first used to validate the results of the existing literature and as the results agreed well, further studies are made to find out the advantages of using repetitive laser pulse over single pulse laser source for laser drilling process for the same laser energy and total heating duration. Vaporization has been avoided during the process and metal removal occurs through melting only. The present numerical model can provide some insight for practical laser drilling process.  相似文献   
22.
23.
Journal of Failure Analysis and Prevention - A failure analysis investigation was performed on the remnants of a carbon fiber rudder stock that fractured during operation on a vessel in an offshore...  相似文献   
24.
Cannulation of the central vein for placement of the temporary dual-lumen catheter for hemodialysis can usually be safely and reliably performed under ultrasonographic guidance. Here, we report a case of aberrant catheter entry into the internal thoracic vein during an apparently smooth procedure. The value of sonographic guidance, together with fluoroscopy with or without venography, will be discussed.  相似文献   
25.
Pumpkin seed oil (PSO) with carnauba wax and beeswax was used to develop nanostructured lipid carriers (NLC) loaded with a UV filter, Uvinul® A Plus B. The aims of the study were to optimize the concentration of PSO to develop a stable NLC formulation, determine storage stability of the NLC with and without PSO, and the synergistic effect of PSO-NLC with UV filter for photoprotective properties. The physical properties of NLC were optimized based on the mean particle size, polydispersity index, and storage stability. The optimized NLC consisted 10% lipid phase (3.5% carnauba wax, 3.5% beeswax, and 3.0% PSO) and 90% aqueous phase. After optimization, Uvinul® A Plus B was added in the optimized PSO-NLC to produce a photoprotective formulation. Uvinul® A Plus B consisted of both UVA (Diethylamino Hydroxybenzoyl Hexyl Benzoate) and UVB (Ethylhexyl Methoxycinnamate) filters. The NLC produced with PSO and Uvinul® A Plus B had mean particle size of 135 ± 2 nm and showed good physical stability under storage time. Besides that, the NLC produced also proven to have positive effect in enhancing the entrapment efficiency and drug loading, which were 82.86 ± 0.15% and 55.41 ± 0.04%, respectively, and showed sun protection factor value of 16.61 ± 3.45. The results indicated the presence of synergistic effect among the PSO-NLC with Uvinul® A Plus B.  相似文献   
26.
27.
Rapid synthesis of long calcium copper titanate (CCTO) nanorods was carried out by sequential annealing. CCTO thin films have been deposited on p-Si substrate by RF sputtering technique and afterwards, the samples were thermally treated using a preheated furnace by varying the annealing temperature from 850 °C to 1100 °C. CCTO nanorods of 12 µm lengths and 400–600 nm diameters were synthesized at 1100 °C. Based on the FESEM observations, a plausible growth mechanism has been proposed to explain the formation of nanorods. The (220) XRD peak of the CCTO film became prominent for the annealing temperature of 950 °C. The presence of nanoscale crystals in amorphous matrix has been observed by HRTEM studies. The elemental mapping of CCTO nanorod has shown a spatial variation of elements throughout the nanorod. The oxide and interface charge density was found to be increased with the rise in annealing temperature.  相似文献   
28.
Positive temperature coefficient to resistivity characteristics of high density polyethylene (HDPE)/silver (Ag)‐coated glass bead (45 wt%) composites, without and with nanoclay, has been investigated with reference to HDPE/carbon black (CB) (10 wt%) composites. Plot of resistivity versus temperature of HDPE/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈128°C, close to the melting temperature (Tm) of HDPE. However, for HDPE/Ag coated glass bead (45 wt%) composites, the PTC trip temperature (≈88°C) appeared well below the Tm of HDPE. Addition of 1 phr clay in the composites resulted in an increase in PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites, whereas no significant effect of clay on PTC trip temperature was evident in HDPE/CB/clay composites. We proposed that the PTC trip temperature in HDPE/Ag‐coated glass bead composites was governed by the difference in coefficient of thermal expansion of HDPE and Ag‐coated glass beads. The room temperature resistivity and PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites were found to be very stable on thermal cycling. Dynamic mechanical analyzer results showed higher storage modulus of HDPE/Ag‐coated glass bead (45 wt%) composites compared with the HDPE/CB (10 wt%) composites. Thermal stability of HDPE/Ag‐coated glass bead (45 wt%) composites was also improved compared with that of HDPE/CB (10 wt%) composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   
29.
Stress‐relaxation behavior of glass fiber‐reinforced polyester composites, prepared by a recently developed manufacturing method called rubber pressure molding (RPM), is investigated with special reference to the effect of environmental temperature (−70°C to +100°C), fiber volume fraction (30–60%), and initial load level (1–5 kN). It is found that the stress‐relaxation rate decreases with an increase in the applied load of composites and a decrease in temperature. Below glass transition temperature, the rate of stress relaxation increases with an increase in volume fraction of fibers in the composites, whereas above glass transition temperature, it increases with a decrease in the volume fraction of fibers. The experimental results for a given composites are summarized by four values, the slopes of the two straight lines (two separate relaxation processes), and their intercepts upon the stress axis. Both the slopes are dependent upon the applied load, temperature, and volume fraction of fibers in the composites. Relaxation times in both primary and secondary are calculated over the wide range of temperatures, loads, and volume fraction of fibers in the composites. It depends strongly on the temperature, but does not depend strongly on the applied load and volume fraction of fibers. The performances of the composites are also evaluated through conventional compression‐molding process. The rate of stress relaxation is small when the composites are made of newly proposed RPM technique when compared with the conventional process. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
30.
Exfoliated graphite (EG) was synthesized from natural flake graphite by acid treatment followed by microwave irradiation. A maximum expanded volume of 560 mL/g was achieved for this exfoliation of graphite. EG/phenolic resin composite bipolar plates for polymer electrolyte membrane fuel cell were fabricated with a high loading of EG by compression molding. The composites possess low density, high electrical conductivity, high thermal stability, and high compressive strength. The composite bipolar plates were also characterized by X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and so on. The composite prepared with 50 wt% of EG has shown the desired properties for bipolar plate as per the US Department of Energy (DOE‐2015) targets. As a result, the EG–resin composites can be used as bipolar plates for polymer electrolyte membrane fuel cell applications. POLYM. ENG. SCI., 55:917–923, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号