首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   64篇
  国内免费   7篇
电工技术   20篇
综合类   3篇
化学工业   240篇
金属工艺   14篇
机械仪表   35篇
建筑科学   78篇
矿业工程   2篇
能源动力   48篇
轻工业   181篇
水利工程   12篇
石油天然气   11篇
武器工业   3篇
无线电   124篇
一般工业技术   192篇
冶金工业   82篇
原子能技术   8篇
自动化技术   199篇
  2024年   4篇
  2023年   14篇
  2022年   45篇
  2021年   56篇
  2020年   48篇
  2019年   51篇
  2018年   56篇
  2017年   50篇
  2016年   57篇
  2015年   36篇
  2014年   55篇
  2013年   93篇
  2012年   74篇
  2011年   75篇
  2010年   68篇
  2009年   58篇
  2008年   46篇
  2007年   56篇
  2006年   32篇
  2005年   26篇
  2004年   28篇
  2003年   21篇
  2002年   12篇
  2001年   10篇
  2000年   18篇
  1999年   25篇
  1998年   18篇
  1997年   24篇
  1996年   16篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   7篇
  1988年   10篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1252条查询结果,搜索用时 18 毫秒
71.
A series of mixed zinc–aluminum phosphate (ZnAlP) catalysts containing 40–90 aluminum molar % were synthesized by a coprecipitation method and characterized by nitrogen adsorption–desorption, X‐ray diffraction, FTIR spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption (TPD) of ammonia. The presence of aluminum greatly affected the surface properties of Zn3(PO4)2 by delaying the crystallization process of Zn3(PO4)2. All amorphous samples were shown to be mesoporous and they contained two types of aluminum surface hydroxyl groups and one type of phosphorus hydroxyl group, as shown by DRIFT spectra. The specific surface area and the acidity of ZnAlP increased on increasing the aluminum content. On the other hand, a great difference in the texture and the concentration of surface acid sites was found by changing the precipitating agent and calcination temperature. Thus these factors also play an important role in the final properties of these catalysts. © 2001 Society of Chemical Industry  相似文献   
72.
Some special thermal and mechanical treatments may completely modify the composition, and the structure of organic material changes its interaction with water. In the case of the instant controlled pressure drop (DIC) technique, the main modification, which is structure expansion and high porosity, allows the product to generally reduce moisture activity. In the special case of cork granules, the impact of DIC in terms of porosity is completely absent and expansion is linked to a tear effect obtained from only the large size granules. In order to characterize this type of treatment, we considered natural and DIC-treated cork granules and determined moisture adsorption isotherms at three different temperatures (25, 40, and 60°C) and different water activity levels ranging from 0.05 to 0.9 using the static gravimetric method. We used three samples of the same cork variety with 0.5–1 mm, 2–4 mm, and 4–6 mm as granule diameter. The adsorption isotherms of both natural untreated and DIC-treated cork whatever granules display a sigmoid form type II isotherm, with equilibrium moisture contents at constant water activity decreasing when temperature increases. The impact of DIC treatment depends of cork shape; the larger the shape, the lower the water activity for the same water content. Such a result is linked to the modification of structure. Thus, for the smallest shape, DIC implying only low thermal effect without any structure modification allows cork to lightly increase its water activity compared to the untreated samples. With higher shape cork granules, as DIC treatment induces a tear effect and some expansion, activity of water is lower for the same water content. For describing the experimental data of adsorption isotherms, we used GAB, BET, and Henderson models. We found the GAB to be the most suitable model with predicted values higher than those obtained using the BET model. We note that monolayer moisture content values increase in the case of big shape cork granules after having been treated by DIC.  相似文献   
73.
The present reactive molecular dynamics (RMD) simulations discuss the formation of interphase regions in cured polymer adhesives. The latter are obtained from the curing of reactive liquid mixtures composed of pentafunctional linkers and bifunctional monomers in contact with idealized surfaces. The present reactive scheme mimics the one of epoxies with amine linkers, i.e., processes investigated experimentally by Possart and co-workers. Generic RMD simulations are performed in a coarse-grained (CG) resolution to evaluate basic principles in curing characterized by preferential interactions. The creation of linker-rich domains is promoted by preferential surface-linker as well as linker-linker interactions in the reactive mixtures. The dimension of the interphase both in the starting mixture and the cured network depends on these preferential interactions which lead to a retardation of the curing velocity. This retardation behavior is mapped by conversion curves as a function of the number of reactive steps and by the spatially resolved profiles of the connected linkers. Although derived by generic potentials, the simulated reduction of the curing velocity is in agreement with experimental results in epoxies. The chosen interactions also imply a smaller number of linker bonds in the interphase than in the bulk region. The present RMD approach offers insight into key parameters of curing processes under the influence of preferential surface interactions coupled to selective attractions in the liquid starting mixture.  相似文献   
74.
We examine the effects of high fullerene nanoparticle (f-NP) concentrations, ?f-NP ∼ (10–20) mass% on polystyrene (PS)/polybutadiene (PB) blend thin film stability. Dewetting of the polymer blend around spinodally clustered f-NPs in this high concentration limit leads to a spinodal like dewetting morphology. This is in contrast to our previously observed results on the stabilization effects of f-NPs on PS/PB blend thin films in the intermediate f-NP concentration range of 7–10 mass%, wherein, after saturating the polymer–blend interface, the NPs stabilize the film by segregating to the blend–substrate interface. We determine three regimes of polymer blend film stability as a function of filler concentration: a) ?f-NP < 7 mass% where preferential segregation of the f-NPs to the polymer–polymer interface leads to macroscopic dewetting, b) ?f-NP ∼ (7–10) mass% where PS/PB blend films exhibit complete film stability, and c) ?f-NP ∼ (11–20) mass%, where spinodal clustering of the f-NPs gives rise to polymer–NP phase exclusion and subsequent dewetting.  相似文献   
75.
Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses.  相似文献   
76.
In this research, a novel method was reported for the synthesis of ZSM-5 nanozeolite. The ZSM-5 nanozeolite was modified by transition metals such as nickel, copper and iron. These nanozeolites were characterized using X-ray diffraction, scanning electronic microscopy, Fourier transform infrared and Energy-dispersive X-ray techniques. The synthesized Fe-ZSM-5 nanozeolite has been smaller average particle size than the other nanozeolites. Adsorption behavior of Acridine Orange (AO) onto nanozeolites has been studied in an aqueous medium using UV–VIS technique. The modified nanozeolites have more adsorption efficiency compared to the unmodified ZSM-5 nanozeolite for AO removal. Also, Fe-ZSM-5 nanozeolite was shown higher adsorption efficiency of AO than the other synthesized nanozeolites. Adsorption isotherms were fitted with the Langmuir, Freundlich and D–R models. The kinetic data were investigated using pseudo-first order and pseudo-second order models. The adsorption kinetics of AO on Fe-ZSM-5 nanozeolitewell matched with pseudo-second order kinetic model.  相似文献   
77.
The liquid thermal conductivity of the ionic liquid (IL), 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ([HMIm][Tf2N]), saturated with compressed vapor and supercritical carbon dioxide was measured over three isotherms (298.15, 323.15, and 348.15 K) and pressures up to approximately 20 MPa using a transient hot-wire technique. Pure [HMIm][Tf2N] thermal conductivity was also measured over a temperature range of 293.15–353.15 K at ambient pressure and with hydrostatic pressure to approximately 20 MPa. Literature vapor–liquid equilibrium data were used to predict the liquid CO2 composition at the conditions investigated. Initially, the liquid thermal conductivity slightly decreased with pressure/composition of CO2 followed by a gradual increase that is mainly attributed to hydrostatic pressure effects. Simple composition-based mixing rules for mixture properties are not qualitatively nor quantitatively accurate. These data could be used to engineer heat transfer equipment required for a variety of proposed IL applications in CO2 capture, absorption refrigeration, biphasic CO2/IL reaction platforms, etc.  相似文献   
78.
The formation of acetic acid and/or ethylene by oxidation of ethane is strongly dependent on X additives or Y promotor added to MoVO-based catalysts. MoV0.4X0.12YOz (X = Nb; Y = Pd;  = 10−4) catalysts were prepared by the slurry method and their structural properties were studied by in situ (redox conditions) XRD, Raman and XPS techniques. The reactivity during reduction and reoxidation was analysed by thermal analysis (TGA/DSC). The oxidation of ethane was carried out in a conventional fixed bed microreactor with on line analysis by gas chromatography. Results show that Nb exerts mainly a structural effect as it is responsible for the stabilisation of molybdenum (VI) by formation of solid solutions with V, and that Pd modifies the rate of reduction of the solid catalysts. The increase of selectivity to acetic acid observed by Pd promotion is likely due to the transformation of ethylene to acetic acid occurring on neighboring Pd–V active sites.  相似文献   
79.
Palm fatty acid distillate (PFAD) is a rich source of vitamin E. As compared to other vegetable oil, PFAD has higher tocotrienol (70–80%) over tocopherol content, which makes it a valuable source for vitamin E extraction. Current vitamin E extraction methods are not sustainable due to the intensive usage of chemical and high operational cost. Hence, the present study investigated for the first time using dry fractionation process as a green and economical pretreatment method for separating solid fraction (stearin) and liquid fraction (olein) in order to concentrate vitamin E from PFAD in olein fraction. We examined the dry fractionation conditions: crystallization ending temperature (36–44 °C), cooling rate (0.3 and 1.5°C min−1), stirring speed (20–125 rpm), and holding time (0–60 min) on the composition of unsaturated and saturated fatty acids as well as vitamin E content in liquid fraction (olein) and solid fraction (stearin) using gas chromatography and high performance liquid chromatography, respectively. In most of these conditions, vitamin E was ultimately higher in olein fraction as compared to stearin fraction, which is correlated with the high degree of unsaturation. Under a cooling rate of 0.3°C min−1, 90 rpm stirring speed, and ending crystallization of 38 °C, the highest vitamin E rich olein fraction was attained with 1479 ± 10.51 ppm in 50 g olein fraction as compared to 1366 ± 7.94 ppm in 500 g of unfractionated PFAD.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号