首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39208篇
  免费   13095篇
  国内免费   3篇
电工技术   723篇
综合类   2篇
化学工业   17041篇
金属工艺   318篇
机械仪表   704篇
建筑科学   1695篇
矿业工程   2篇
能源动力   841篇
轻工业   7159篇
水利工程   298篇
石油天然气   47篇
无线电   6954篇
一般工业技术   11580篇
冶金工业   567篇
原子能技术   5篇
自动化技术   4370篇
  2024年   6篇
  2023年   9篇
  2022年   11篇
  2021年   287篇
  2020年   2108篇
  2019年   3173篇
  2018年   3099篇
  2017年   3430篇
  2016年   3878篇
  2015年   3955篇
  2014年   3868篇
  2013年   4961篇
  2012年   2667篇
  2011年   2281篇
  2010年   2611篇
  2009年   2479篇
  2008年   2017篇
  2007年   1863篇
  2006年   1622篇
  2005年   1346篇
  2004年   1322篇
  2003年   1287篇
  2002年   1240篇
  2001年   1086篇
  2000年   1059篇
  1999年   443篇
  1998年   39篇
  1997年   32篇
  1996年   11篇
  1995年   13篇
  1994年   13篇
  1993年   9篇
  1992年   7篇
  1991年   16篇
  1990年   11篇
  1989年   5篇
  1988年   6篇
  1987年   9篇
  1986年   10篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A new series of charge neutral Os(II) isoquinolyl triazolate complexes ( 1 – 4 ) with both trans and cis arrangement of phosphine donors are synthesized, and their structural, electrochemical and photophysical properties are established. In sharp contrast to the cis‐arranged complexes 2 – 4 , the trans derivative 1 , which shows a planar arrangement of chromophoric N‐substituted chelates, offers the most effective extended π‐delocalization and hence the lowest excited state energy gap. These complexes exhibit phosphorescence with peak wavelengths ranging from 692–805 nm in degassed CH2Cl2 at room temperature. Near‐infrared (NIR)‐emitting electroluminescent devices employing 6 wt % of 1 (or 4 ) doped in Alq3 host material are successfully fabricated. The devices incorporating 1 as NIR phosphor exhibit fairly intense emission with a peak wavelength at 814 nm. Forward radiant emittance reaches as high as 65.02 µW cm?2, and a peak EQE of ~1.5% with devices employing Alq3, TPBi and/or TAZ as electron‐transporting/exciton‐blocking layers. Upon switching to phosphor 4 , the electroluminescence blue shifts to 718 nm, while the maximum EQE and radiance increase to 2.7% and 93.26 (μW cm?2) respectively. Their performances are optimized upon using TAZ as the electron transporting and exciton‐blocking material. The OLEDs characterized represent the only NIR‐emitting devices fabricated using charge‐neutral and volatile Os(II) phosphors via thermal vacuum deposition.  相似文献   
52.
Transition metals incorporated into polymers lead to unusual or improved physical properties that significantly differ from those of purely organic polymers. A simple and practicable incorporation of diverse transition metals into any available polymer would make an important contribution to overcome some of the synthetic difficulties of metal‐polymer hybrid materials. Here, it is demonstrated that atomic layer deposition (ALD) can be a promising means to resolve some of those difficulties. It is found that even polytetrafluoroethylene (PTFE) with its great physical and chemical stability can be easily transformed into a transition metal–PTFE hybrid material simply by applying a metal‐oxide ALD process to PTFE. Upon metal incorporation into the PTFE, the molecular structure as well as mechanical properties (tensile behavior) of PTFE were observed to significantly change. For a better understanding of the changes to the material, experimental investigations using Raman spectroscopy, attenuated‐total‐reflection Fourier‐transform infrared spectroscopy, wide‐angle X‐ray diffraction, and energy‐dispersive X‐ray analysis were performed. In addition, with density functional theory calculations, potential bonding states of the incorporated metal into PTFE were modeled and predicted. The ALD‐based vapor‐phase approach for metal incorporation into a polymer could bring about rapid progress in the research area of metal–polymer hybrid materials.  相似文献   
53.
54.
55.
In this letter, we present an event stream processing system that can evaluate a pattern query for a data sequence with predicates. We propose a pattern query language and develop a pattern query processing system. In our system, we propose novel techniques for run‐time aggregation and negation processing and apply our system to stream data generated from vehicles to monitor unusual driving patterns.  相似文献   
56.
It is important to provide quality of service (QoS) guarantees if we want to support multimedia applications over wireless networks. In this paper, considering the features of tiering in sectored cellular networks, we propose a novel scheme for bandwidth reservation to approach QoS provisioning. By predicting the movement of each connection, the reserving of bandwidth is only required in needful neighboring cells instead of in all neighboring cells. In addition, an admission control mechanism incorporated with bandwidth borrowing assists in distributing scarce wireless bandwidth in more adaptive way. Through mathematical analysis, we proof the advantages of tier‐based approach and the bound for the selection of tiered boundary. The simulation results also verify that our scheme can achieve superior performance than traditional schemes regarding no bandwidth reserving, fixed bandwidth reserving, and bandwidth borrowing in sectored cellular networks when performance metrics are measured in terms of the connection dropping probability (CDP), connection blocking probability (CBP), and bandwidth utilization (BU). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
57.
58.
Cellulose‐based triboelectric nanogenerators (TENGs) have gained increasing attention. In this study, a novel method is demonstrated to synthesize cellulose‐based aerogels and such aerogels are used to fabricate TENGs that can serve as mechanical energy harvesters and self‐powered sensors. The cellulose II aerogel is fabricated via a dissolution–regeneration process in a green inorganic molten salt hydrate solvent (lithium bromide trihydrate), where. The as‐fabricated cellulose II aerogel exhibits an interconnected open‐pore 3D network structure, higher degree of flexibility, high porosity, and a high surface area of 221.3 m2 g?1. Given its architectural merits, the cellulose II aerogel‐based TENG presents an excellent mechanical response sensitivity and high electrical output performance. By blending with other natural polysaccharides, i.e., chitosan and alginic acid, electron‐donating and electron‐withdrawing groups are introduced into the composite cellulose II aerogels, which significantly improves the triboelectric performance of the TENG. The cellulose II aerogel‐based TENG is demonstrated to light up light‐emitting diodes, charge commercial capacitors, power a calculator, and monitor human motions. This study demonstrates the facile fabrication of cellulose II aerogel and its application in TENG, which leads to a high‐performance and eco‐friendly energy harvesting and self‐powered system.  相似文献   
59.
Microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated next generation surface enhanced Raman scattering (SERS) sensors and plasmonic devices. In this paper we demonstrate silver nanoparticle substrates for SERS detection within MOF templates with exceptional temporal and mechanical stability, using organometallic precursors and a high‐pressure chemical deposition technique. These 3D substrates offer significant benefits over conventional planar detection geometries, with the long electromagnetic interaction lengths of the optical guided fiber modes exciting multiple plasmon resonances along the fiber. The large Raman response detected when analyte molecules are infiltrated within the structures can be directly related to the deposition profile of the nanoparticles within the MOFs via electrical characterization.  相似文献   
60.
Efficient production of ammonia using environmentally friendly techniques under ambient conditions is crucial to renewable energy storage and industrial applications, and catalysts with new reaction pathways are highly desirable. In this work, black phosphorus (BP) is used as a metal‐free 2D catalyst for the photoelectrochemical (PEC) nitrogen reduction reaction (NRR). The electrode is fabricated by layer‐by‐layer assembly of BP nanosheets on an indium tin oxide substrate. The PEC NRR activity in the N2 saturated aqueous electrolyte without a sacrificial agent is excellent, as exemplified by an ammonia yield rate of 102.4 µg h?1 mgcat.?1 and Faradaic efficiency of 23.3% at ?0.4 V, which are the best among nonmetal catalysts for synthesis of ammonia by photocatalysis and electrocatalysis. Furthermore, the BP electrode shows excellent stability after 6 consecutive cycles. The excellent PEC catalytic properties are attributed to the light excitation enhanced electrocatalytic process and that the external bias promoted photocatalytic process improves ammonia production synergistically. The results not only demonstrate the great potential of BP in PEC catalysis, but also identify a promising technique to produce ammonia under ambient conditions using solar energy and electric energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号