首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   8篇
  国内免费   1篇
电工技术   6篇
化学工业   71篇
金属工艺   7篇
机械仪表   10篇
建筑科学   2篇
能源动力   9篇
轻工业   18篇
无线电   15篇
一般工业技术   57篇
冶金工业   8篇
原子能技术   12篇
自动化技术   25篇
  2023年   3篇
  2022年   16篇
  2021年   15篇
  2020年   5篇
  2019年   3篇
  2018年   14篇
  2017年   8篇
  2016年   11篇
  2015年   9篇
  2014年   10篇
  2013年   26篇
  2012年   26篇
  2011年   34篇
  2010年   12篇
  2009年   10篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
91.
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.  相似文献   
92.
We proposed the low temperature formation technique of strain-relaxed Si1 − x − yGexSny-on-insulator (SGTOI) structures. We found that the solid-phase reaction and the formation of single and uniform Si1 − x − yGexSny layer on an insulator after annealing SiO2/Ge1 − zSnz/SOI structures even at a temperature as low as 400 °C. We characterized the crystalline structure of SGTOI, and investigated the effects of annealing, Sn incorporation, and a SiO2 cap layer on the solid-phase reaction between Ge1 − zSnz and SOI layers. The solid-phase reaction is enhanced with a higher Sn content and a thicker SiO2 cap layer, and then Si1 − x − yGexSny layers are more rapidly formed. The SGTOI layer exhibits very low mosaicity and have good crystallinity.  相似文献   
93.
The use of dendrimer templates to make metal-based nanoparticles of controlled size has attracted much interest. These highly branched macromolecules have well-defined structures that enable them to bind metal ions to generate precursors that can be converted into nanoparticles. We describe the sub-nanometre size control of both anatase and rutile forms of TiO2 particles with phenylazomethine dendrimers, leading to samples with very narrow size distributions. Such fine tuning is possible because both the number and location of metal ions can be precisely controlled in these templates. Quantum size effects are observed in the particles, and the energy gap between the conduction and valence bands exhibits a blueshift with decreasing particle size and is dependent on the crystal form of the material. The dependency of the bandgap energy on these factors is explained using a semi-empirical effective mass approximation.  相似文献   
94.
A new leak element using a sintered stainless steel filter with a pore size of less than 1 μm has been developed for in-situ calibrations of ionization gauges (IGs) and quadruple mass spectrometers (QMSs). The gas flow through this leak element realizes molecular flow at an upstream pressure of less than 104 Pa. This new leak element, which is a kind of open-type standard leak, has four advantages. (1) Calibrations for various gas species are available only with this single leak element because the conductance is easily compensated for gas species by molecular mass. (2) Calibrations with multiple pressure points are easily available because the conductance is constant against changing upstream pressure. (3) Calibrations for a gas mixture are available because the interference effect between gas molecules in a gas mixture is negligible. (4) The dependence of flow rate on temperature is small and is compensated theoretically. These advantages were experimentally demonstrated. The stability and uncertainty of the leak element were also evaluated. The changes in the conductance of this leak element were less than 3% over one year. Since the conductance is typically 10−10 · m3/s, the reference gas flow in the range from 10−8 Pa · m3/s to 10−6 Pa m3 is obtained by changing the upstream pressure from 102 Pa to 104 Pa with an uncertainty of approximately 6%.  相似文献   
95.
The effect of surface hydrophobicity on the adsorption behaviour of polyelectrolytes is investigated using graphite and alumina powder slurries. Graphite slurries containing carboxymethylcellulose (CMC) have a relatively low apparent viscosity and afford a sediment with a relatively high packing fraction as compared to that obtained when using sodium polyacrylate (Na-PAA) as a dispersant, although both have the same functional group. As a greater amount of CMC is adsorbed, it is concluded that its adsorption mechanism involves hydrophobic interaction, thus making it a better dispersant for hydrophobic powders in aqueous media. In contrast, Na-PAA is more effective in dispersing relatively hydrophilic powders such as alumina, as it adsorbs mainly through electrostatic interactions.  相似文献   
96.
On the damping analysis of FRP laminated composite plates   总被引:2,自引:0,他引:2  
This paper presents the damping analysis of fiber reinforced plastics laminated composite plates. For this purpose, the maximum strain and kinetic energies of a cross-ply laminated plate are evaluated analytically based on the three-dimensional theory of elasticity. The displacements of the simply supported rectangular plates are expanded into the polynomial forms with respect to a thickness coordinate, and then governing equations are formulated by using the Ritz's method. In the numerical calculations, natural frequencies and modal damping ratios are calculated for the plates with different stacking sequence and thickness ratios. The validity of the assumption of deformations and the applicability of the other plate theories (e.g. classical lamination theory (CLT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory) to the laminated thick plates are discussed by comparing the numerical results obtained by the present method with the CLT and the FSDT solutions.  相似文献   
97.
We have previously reported that ultrafine-grained (UFG) microstructures can be obtained in a Co-29Cr-6Mo (wt pct) alloy by utilizing dynamic recrystallization (DRX) that occurs during conventional hot deformation (Yamanaka et al.: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1980?94). The present study investigates the novel DRX mechanism of this alloy in detail. The microstructure evolution during hot deformation under relatively high Zener?CHollomon (Z) parameter conditions for which ultrafine grains can develop was systematically investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy. This alloy exhibited a different flow stress behavior and microstructural development from conventional DRX mechanisms. The deformation microstructure contained a large number of stacking faults, which implies that planar dislocation slip is the primary deformation mechanism in the hot deformation of the Co-29Cr-6Mo alloy due to its abnormally low stacking fault energy (SFE) at elevated temperatures. Inhomogeneities in local strain distributions induced by planar slip will enhance grain subdivision by geometrically necessary (GN) dislocation boundaries. Deformation twinning may also contribute to grain refinement. The DRX mechanism operating in the Co-29Cr-6Mo alloy is discussed by considering the relationships between anomalous dislocation structures, flow stress behavior, texture development, and nucleation behavior.  相似文献   
98.
Sensitization by chromium depletion due to chromium carbide precipitation at grain boundaries in austenitic stainless steels can not be prevented perfectly only by previous conventional techniques, such as reduction of carbon content, stabilization-treatment, local solution-heat-treatment, etc. Recent studies on grain boundary structure have revealed that the sensitization depends strongly on grain boundary character and atomic structure, and that low energy grain boundaries such a~ coincidence-site-lattice (CSL) boundaries have strong resistance to intergranular corrosion. The concept of grain boundary design and control has been developed as grain boundary engineering (GBE). GBEed materials are characterized by high frequencies of CSL boundaries which are resistant to intergranular deterioration of materials, such as intergranular corrosion. A thermomechanical treatment was tried to improve the resistance to the sensitization by GBE. A type 304 austenitic stainless steel was cold-rolled and solution-heat-treated, and then sensitization-heat-treated. The grain boundary character distribution was examined by orientation imaging microscopy (OIM). The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation (EPR) and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction The frequency of CSL boundaries indicated a maximum at the small reduction. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanical-treated specimen than in the base material. A high density of annealing twins were observed in the thermomechanical-treated specimen. The results suggdst that the therrmomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface. The effects of carbon content and other minor elements on optimization in grain boundary character distribution (GBCD) and thermomechanical parameters were also examined during GBE.  相似文献   
99.
100.
Effective rhythm expression (ERE) from a robot to a human performing a multi-modal physical-cooperation (MMPC) task was accomplished. During MMPC, the participant and the robot can exchange various rhythms between themselves. To accomplish ERE, it is important to appropriately select the modalities in which the robot expresses its desired rhythm. Accordingly, a hypothesis that selecting the visual rhythm for RE prevents MMPC was tested and confirmed. This hypothesis was preliminarily confirmed in regard to MMPC between two humans. Moreover, to confirm the hypothesis in regard to human–robot cooperation, an experimental system (including a rope-turning robot) was developed. This experimental system allowed experimenters to evaluate the synchronization during MMPC between a human and a robot by measuring the norm of angular velocities. The results of several experiments (namely, a comparison of norms), in which several combinations of visual and auditory rhythmic stimuli were presented to the subjects, strongly supported the hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号