首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4910篇
  免费   287篇
  国内免费   11篇
电工技术   35篇
综合类   5篇
化学工业   1011篇
金属工艺   123篇
机械仪表   109篇
建筑科学   246篇
矿业工程   9篇
能源动力   153篇
轻工业   461篇
水利工程   49篇
石油天然气   18篇
武器工业   2篇
无线电   430篇
一般工业技术   922篇
冶金工业   863篇
原子能技术   28篇
自动化技术   744篇
  2023年   40篇
  2022年   70篇
  2021年   135篇
  2020年   95篇
  2019年   111篇
  2018年   144篇
  2017年   129篇
  2016年   158篇
  2015年   119篇
  2014年   163篇
  2013年   276篇
  2012年   278篇
  2011年   347篇
  2010年   249篇
  2009年   272篇
  2008年   303篇
  2007年   289篇
  2006年   241篇
  2005年   249篇
  2004年   175篇
  2003年   155篇
  2002年   151篇
  2001年   77篇
  2000年   69篇
  1999年   63篇
  1998年   72篇
  1997年   64篇
  1996年   69篇
  1995年   53篇
  1994年   49篇
  1993年   55篇
  1992年   40篇
  1991年   27篇
  1990年   41篇
  1989年   41篇
  1988年   34篇
  1987年   42篇
  1986年   38篇
  1985年   33篇
  1984年   29篇
  1983年   29篇
  1982年   28篇
  1981年   15篇
  1980年   16篇
  1979年   15篇
  1978年   17篇
  1977年   7篇
  1976年   9篇
  1975年   6篇
  1974年   7篇
排序方式: 共有5208条查询结果,搜索用时 31 毫秒
81.
Large area projection sintering (LAPS) promises to be a new method in the field of additive manufacturing. Developed in the Mechanical Engineering Department, University of South Florida, LAPS uses long exposure times over a broad area of powder to fuse into dense, reproducible materials. In contrast, LS, a common powder-based additive manufacturing, uses a focused beam of light scanned quickly over the material. Local regions of concentrated high-energy bursts of light lead to higher peak temperatures and differing cooling dynamics and overall crystallinity. The mechanical properties of laser sintered specimens suffer because of uneven particle fusion. LAPS offers the capacity to fine-tune fusion properties through enhanced thermodynamic control of the heating and cooling profiles for sintering. Further research is required to identify the relationship between LAPS build settings and part properties to enable the fabrication of custom parts with desired properties. This study examines the influence of LAPS sintering parameters on chemical structures, crystallinity, mechanical, and thermal properties of polyamide-12 specimens using powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, small-angle X-ray scattering, scanning electron microscopy, and microhardness testing. It was observed that higher crystallinity was imparted to specimens that were sintered for a shorter time and vice versa.  相似文献   
82.
Journal of Chemical Ecology - There is increasing evidence that microorganisms, particularly fungi and bacteria, emit volatile compounds that mediate the foraging behaviour of insects and therefore...  相似文献   
83.
激光深熔焊过程中会在熔池上方产生等离子体云,若该等离子体云过密,将降低激光入射到工件表面能量密度。在工业应用中,常采用侧吹辅助气体来减弱等离子体云的影响。本文通过试验,研究了在不同气体流量下,侧吹气体方向不同对焊接过程稳定性和焊缝成形的影响。结果发现:使用大功率CO2激光焊接AH32时。侧吹气体方向对焊缝成形有着明显的影响。从熔池和等离子体两个方面,解释了侧吹气体方向的影响机制。  相似文献   
84.
85.
The effects of joint design on the mechanical properties of AL7075-T6 aluminum sheet were studied on the latest automated gas-tungsten arc-welding system. Using ER5356 filler metal, full-penetration welds were made on workpieces with various included joint angles. Testing of the mechanical properties of the joints was done in the as-welded, naturally aged, and postweld heat-treated conditions. The results show that by using crack-resistant filler, and by selecting the proper joint design and postweld heat treatment, strong, dependable welds can be produced on thin AL7075 sheet material. An elasticity model of the weld joint was established to help understand the mechanical behavior of the joints. An undermatched joint design is shown to be capable of achieving a joint strength that matches the strength of the base alloy.  相似文献   
86.
The present study has been undertaken to better understand the solidification behavior of Al−Si−Fe alloys containing 7wt.% Si and 0.9wt.% Fe, with particular regard to the formation of phase during controlled solidification and influence of growth rates on intermetallic phase selection. The alloys studied were Al-7Si-0.9Fe alloys, which were produced by a modified Bridgman solidification arrangement. These alloys were solidified unidirectionally with different growth rates (1–30mm/min). The solidified microstructure of these alloys consists of the growth of primary aluminum and multiple second phase reactions.  相似文献   
87.
A computational fluid dynamics (CFD) model is developed to predict particle dynamic behavior in a high-velocity oxyfuel (HVOF) thermal spray gun in which premixed oxygen and propylene are burnt in a combustion chamber linked to a long, parallel-sided nozzle. The particle transport equations are solved in a Lagrangian manner and coupled with the two-dimensional, axisymmetric, steady state, chemically reacting, turbulent gas flow. Within the particle transport model, the total flow of the particle phase is modeled by tracking a small number of particles through the continuum gas flow, and each of these individual particles is tracked independently through the continuous phase. Three different combustion chamber designs were modeled, and the in-flight particle characteristics of Inconel were 625 studied. Results are presented to show the effect of process parameters, such as particle injection speed and location, total gas flow rate, fuel-to-oxygen gas ratio, and particle size on the particle dynamic behavior for a parallel-sided, 12 mm long combustion chamber. The results indicate that the momentum and heat transfer to particles are primarily influenced by total gas flow. The 12 mm long chamber can achieve an optimum performance for Inconel 625 powder particles ranging in diameter from 20 to 40 μm. At a particular spraying distance, an optimal size of particles is observed with respect to particle temperature. The effect of different combustion chamber dimensions on particle dynamics was also investigated. The results obtained for both a 22 mm long chamber and also one with a conical, converging design are compared with the baseline data for the 12 mm chamber.  相似文献   
88.
Recently, there has been considerable interest in producing cermet coatings with nanoscale carbide grains in the size range 50 to 500 nm. In this article, the production of nanoscale TiC grains in a Ni-based alloy matrix by reactive high-velocity oxyfuel (HVOF) spraying of metastable Ni-Ti-C powder is reported. Mechanical alloying of a Ni(Cr) prealloyed powder and Ti and C elemental powders was performed in a planar-type ball mill, and materials were characterized in detail using x-ray diffraction (XRD) and scanning electron micros-copy (SEM). Phase changes were correlated with milling time and other processing conditions. Results show that, by the selection of appropriate conditions, a metastable Ni-Ti-C powder could be obtained with the nominal composition 50wt.%Ni-40wt.%Ti-10wt.%C. Following sieving and classification, powder was produced with a particle size range of −38 to 8 μm, which is suitable for HVOF spraying. Coatings, approximately 250 μm thick, were deposited by HVOF spraying onto mild steel substrates, and the microstructures formed were investigated. XRD showed that a self-propagating high-temperature synthesis (SHS) reaction had occurred in the powder particles during spraying and that the principal phases present in the coating were TiC and a Ni-rich solid solution; small quantities of NiTi, TiO2, and NiTiO3 were also present. SEM revealed that the coatings had a characteristic, splatlike morphology and that TiC formed as a nanoscale dispersion, with a size range of ∼50 to 200 nm, within solidified splats. The microstructures of these reactively sprayed Ni-TiC coatings are briefly compared with those observed in HVOF-sprayed coatings deposited using prereacted SHS powder. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   
89.
90.
The mobility limiting scattering mechanisms for amorphous semiconductors and polar polycrystalline semiconductors are studied in the context of developing new high‐performance thin‐film transistor (TFT) channel layer materials for large‐area electronics. A physics‐based model for carrier transport in an amorphous semiconductor is developed to estimate the mobility limits of amorphous semiconductor TFTs. The model involves band tail state trapping of a diffusive mobility. Simulation reveals a strong dependence on the band tail density of states. This consideration makes it difficult to realize a high‐performance p‐type oxide TFT. A polar crystalline semiconductor may offer a higher mobility but is fundamentally limited by polar optical phonon scattering. Any crystalline TFT channel layer for practical large‐area applications will not be a single crystal but polycrystalline, and therefore, grain size and grain boundary‐dependent scattering will further degrade the transport properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号