首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   90篇
  国内免费   3篇
电工技术   19篇
综合类   2篇
化学工业   211篇
金属工艺   37篇
机械仪表   79篇
建筑科学   4篇
矿业工程   3篇
能源动力   37篇
轻工业   44篇
水利工程   9篇
无线电   170篇
一般工业技术   271篇
冶金工业   67篇
原子能技术   12篇
自动化技术   78篇
  2024年   1篇
  2023年   17篇
  2022年   20篇
  2021年   38篇
  2020年   29篇
  2019年   28篇
  2018年   31篇
  2017年   40篇
  2016年   39篇
  2015年   29篇
  2014年   42篇
  2013年   56篇
  2012年   74篇
  2011年   83篇
  2010年   46篇
  2009年   51篇
  2008年   44篇
  2007年   30篇
  2006年   32篇
  2005年   25篇
  2004年   34篇
  2003年   21篇
  2002年   35篇
  2001年   21篇
  2000年   19篇
  1999年   14篇
  1998年   29篇
  1997年   26篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   7篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1043条查询结果,搜索用时 15 毫秒
21.
We fabricate thin epitaxial crystal silicon solar cells on display glass and fused silica substrates overcoated with a silicon seed layer. To confirm the quality of hot‐wire chemical vapor deposition epitaxy, we grow a 2‐µm‐thick absorber on a (100) monocrystalline Si layer transfer seed on display glass and achieve 6.5% efficiency with an open circuit voltage (VOC) of 586 mV without light‐trapping features. This device enables the evaluation of seed layers on display glass. Using polycrystalline seeds formed from amorphous silicon by laser‐induced mixed phase solidification (MPS) and electron beam crystallization, we demonstrate 2.9%, 476 mV (MPS) and 4.1%, 551 mV (electron beam crystallization) solar cells. Grain boundaries likely limit the solar cell grown on the MPS seed layer, and we establish an upper bound for the grain boundary recombination velocity (SGB) of 1.6x104 cm/s. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
22.
Small molecule pentacene layer has been a representative among many organic thin‐film transistor (OTFT) channels with decent p‐type mobilities, but it is certainly light‐sensitive due to its relatively small highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap (1.85 eV). Although a few other small molecule‐based layers have been reported later, their photo‐stabilities or related device applications have hardly been addressed. Here, a new photostable organic layer is reported, heptazole (C26H16N2), which has almost the same HOMO level as that of pentacene but with a higher HOMO‐LUMO gap (≈2.95 eV). This heptazole OTFT displays a decent mobility comparable to that of conventional amorphous Si TFTs, showing good photostability unlike pentacene OTFTs. An image pixel driving the photostable heptazole OTFT connected to a pentacene/Al Schottky photodiode is demonstrated. This heptazole OTFT also conveniently forms a logic inverter coupled with a pentacene OTFT, sharing Au for source/drain.  相似文献   
23.
The cuticles of insects and marine crustaceans are fascinating models for man‐made advanced functional composites. The excellent mechanical properties of these biological structures rest on the exquisite self‐assembly of natural ingredients, such as biominerals, polysaccharides, and proteins. Among them, the two commonly found building blocks in the model biocomposites are chitin nanofibers and silk‐like proteins with β‐sheet structure. Despite being wholly organic, the chitinous protein complex plays a key role for the biocomposites by contributing to the overall mechanical robustness and structural integrity. Moreover, the chitinous protein complex alone without biominerals is optically transparent (e.g., dragonfly wings), thereby making it a brilliant model material system for engineering applications where optical transparency is essentially required. Here, inspired by the chitinous protein complex of arthropods cuticles, an optically transparent biomimetic composite that hybridizes chitin nanofibers and silk fibroin (β‐sheet) is introduced, and its potential as a biocompatible structural platform for emerging wearable devices (e.g., smart contact lenses) and advanced displays (e.g., transparent plastic cover window) is demonstrated.  相似文献   
24.
We introduce a pixel‐structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X‐ray converter when it is coupled to photosensitive elements. The sample was prepared by filling Gd2O2S:Tb scintillation material into a square‐pore‐shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X‐ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 mm?1. The spatial frequency at 10% of the modulation‐transfer function was about 6 mm?1.  相似文献   
25.
We report on the fabrication of 2-V-operating ZnO-based inverter with two n-channel thin-film transistors (TFTs) on 22-nm-thin organic/inorganic nanohybrid dielectric, which contains AlOx/TiOx/AlOx in triple-layer structure. The inverter shows a high voltage gain of ~20 under the supply voltage (VDD) of 2 V but with a marginal transition voltage of 0.1 V (operation range of 0-2 V). To control the transition voltage to a more adequate value, an 8-V gate pulse was applied on driving ZnO-TFT so that some of the channel electrons would be tunneled through the AlOx-based barrier and trapped in the TiOx-based layer. Our inverter then displayed an optimum transition voltage of 0.75 V.  相似文献   
26.
Ad hoc networks have a scalability problem. When the nodes of an ad hoc network increase in number or mobility, the amount of control traffic for routing increases and could cause traffic congestion. Cluster-based routing schemes have been proposed as a solution to this problem. Typical cluster-based ad hoc networks use a proactive routing scheme for intra-cluster routes and a reactive routing scheme for inter-cluster routes. In this study, we propose a new cluster-based routing scheme for ad hoc networks which makes use of the mobility of nodes. Nodes are divided into two groups on the basis of their mobility. For a route search within a cluster, a proactive routing scheme is used for low-mobility nodes and a flooding-based reactive routing scheme is used for high-mobility nodes. The required control traffic of the proposed scheme is analyzed and optimal parameters of the proposed scheme are derived from the analysis. The numerical results show that the proposed scheme produces far less control traffic than a typical cluster-based routing scheme.  相似文献   
27.
With the recent interest in data storage in flexible electronics, highly reliable charge trap-type organic-based non-volatile memory (CT-ONVM) has attracted much attention. CT-ONVM should have a wide memory window, good endurance, and long-term retention characteristics, as well as mechanical flexibility. This paper proposed CT-ONVM devices consisting of band-engineered organic–inorganic hybrid films synthesized via an initiated chemical vapor deposition process. The synthesized poly(1,3,5-trimethyl-1,3,5,-trivinyl cyclotrisiloxane) and Al hybrid films are used as a tunneling dielectric layer and a blocking dielectric layer, respectively. For the charge trapping layer, different Hf, Zr, and Ti hybrids are examined, and their memory performances are systematically compared. The best combination of hybrid dielectric stacks showed a wide memory window of 6.77 V, good endurance of up to 104 cycles, and charge retention of up to 71% after 108 s even under the 2% strained condition. The CT-ONVM device using the hybrid dielectric stacks outperforms other organic-based charge trap memory devices and is even comparable in performance to conventional inorganic-based poly-silicon/oxide/nitride/oxide/silicon structures devices. The CT-ONVM using hybrid dielectrics can overcome the inherent low reliability and process complexity limitations of organic electronics and expedite the realization of wearable organic electronics.  相似文献   
28.
The effect of Mn was investigated in a synthesized multilayer system made up of five layers of InMnGaAs/GaAs quantum well (QW) grown on semi-insulating (100)-oriented substrates prepared by low-temperature molecular beam epitaxy. Magnetic moment measurements on a superconducting quantum interference device magnetometer revealed the presence of ferromagnetism with a Curie temperature above room temperature in a five-layer InGaMnAs/GaAs QW structure in a GaAs matrix. X-ray diffraction and secondary ion mass spectroscopy measurements powerfully confirmed the second phase founding of ferromagnetic GaMn and MnAs clusters. The ferromagnetism existing in five layers of InMnGaAs/GaAs QW is not intrinsic, but extrinsic due to the presence of Mn dopant clusters such as GaMn and MnAs clusters.  相似文献   
29.
Bioresorbable electronic systems represent an emerging class of technology of interest due to their ability to dissolve, chemically degrade, disintegrate, and/or otherwise physically disappear harmlessly in biological environments, as the basis for temporary implants that avoid the need for secondary surgical extraction procedures. Polyanhydride‐based polymers can serve as hydrophobic encapsulation layers for such systems, as a subset of the broader field of transient electronics, where biodegradation eventually occurs by chain scission. Systematic experimental studies that involve immersion in phosphate‐buffered saline solution at various pH values and/or temperatures demonstrate that dissolution occurs through a surface erosion mechanism, with little swelling. The mechanical properties of this polymer are well suited for use in soft, flexible devices, where integration can occur through a mold‐based photopolymerization technique. Studies of the dependence of the polymer properties on monomer compositions and the rates of permeation on coating thicknesses reveal some of the underlying effects. Simple demonstrations illustrate the ability to sustain operation of underlying biodegradable electronic systems for durations between a few hours to a week during complete immersion in aqueous solutions that approximate physiological conditions. Systematic chemical, physical, and in vivo biological studies in animal models reveal no signs of toxicity or other adverse biological responses.  相似文献   
30.
Cyclic delay diversity (CDD) is an attractive diversity technique due to its low complexity and compatibility to existing wireless communication systems. This letter proposes a CDD with frequency domain turbo equalization (FDTE) for single carrier (SC) transmission, in order to achieve the full spatial diversity of frequency-selective multi-antenna channels. The frequency diversity inherent in SC is picked up from the increased channel selectivity of CDD. The noise or intersymbol interference enhanced by equalization for highly selective channels is then mitigated through applying FDTE at the receiver. Simulation results show that the performance of proposed system approaches the corresponding orthogonal spacetime block coding (STBC) system in slowly fading channels without any data rate loss, and considerably outperforms the STBC system in fast fading channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号