首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52654篇
  免费   2764篇
  国内免费   154篇
电工技术   708篇
综合类   67篇
化学工业   10586篇
金属工艺   2135篇
机械仪表   3242篇
建筑科学   1114篇
矿业工程   26篇
能源动力   2113篇
轻工业   3898篇
水利工程   271篇
石油天然气   88篇
武器工业   2篇
无线电   7811篇
一般工业技术   10669篇
冶金工业   7154篇
原子能技术   658篇
自动化技术   5030篇
  2024年   24篇
  2023年   539篇
  2022年   859篇
  2021年   1481篇
  2020年   1071篇
  2019年   1176篇
  2018年   1431篇
  2017年   1416篇
  2016年   1751篇
  2015年   1295篇
  2014年   2091篇
  2013年   3013篇
  2012年   3265篇
  2011年   3891篇
  2010年   2816篇
  2009年   2923篇
  2008年   2812篇
  2007年   2186篇
  2006年   2036篇
  2005年   1729篇
  2004年   1575篇
  2003年   1522篇
  2002年   1333篇
  2001年   1134篇
  2000年   997篇
  1999年   1029篇
  1998年   2524篇
  1997年   1571篇
  1996年   1168篇
  1995年   793篇
  1994年   631篇
  1993年   612篇
  1992年   321篇
  1991年   337篇
  1990年   308篇
  1989年   303篇
  1988年   263篇
  1987年   211篇
  1986年   153篇
  1985年   149篇
  1984年   92篇
  1983年   70篇
  1982年   58篇
  1981年   54篇
  1980年   49篇
  1979年   33篇
  1978年   35篇
  1977年   132篇
  1976年   190篇
  1975年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The stability of lamellar structure is crucial for the creep resistance of TiAl alloys, but degradation of the lamellar structure is unavoidable at high temperatures. The degradation of the lamellar structure in PST crystals of Ti-48mol.%Al was studied during high temperature exposure (annealing and creep testing) to examine how to make a stable lamellar structure with high creep deformation resistance. Since the six orientation variants of γ lamellae are nucleated independently of the adjoining lamellae, pseudo twin and 120° rotational fault boundaries are most frequently observed at the initial stage of lamellar formation. The preferential removal of high energy (pseudo twin and 120° rotational fault) boundaries during the evolution of lamellar structure results in the highly probable appearance of a true twin boundary at a later stage of lamellar evolution. The coarsening of lamellar spacing and the spheroidization of the lamellae are the major degradation events occurring during creep deformation, and the migration of the lamellar boundaries brings both of them about. The lamellar structures of TiAl alloy contain four types of lamellar boundaries. The stability of the four types of boundaries decreases in the following order: γ/α2 > true twin > pseudo twin > or=120° rotational fault boundaries. The γ/α2 boundary has the highest stability (lowest mobility), and the high density of γ/α2 boundaries is proposed to make a stable lamellar structure with good creep resistance. A material having the high density of γ/α2 boundaries was produced through the heat treatment of a PST crystal in the α+γ two-phase regime. The excellent creep properties of the material were proven through creep tests of hard oriented PST crystals made of the material. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials,” organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   
982.
983.
A coating consisting of (Cr2N−Mo2S3) overlay coating and an underlying Cr coating was deposited on a steel substrate by D.C. magnetron sputtering. The oxidation characteristics of the deposited double-layered coating were studied at temperatures ranging from 400 to 900 °C in air. The oxidation product was primarily Cr2O3. The unreacted coating beneath the oxide scale had some dissolved oxygen, sulfur, and iron. Oxidation of the coating occurred via complex routes such as the outward diffusion of chromium and nitrogen from Cr2N and iron from the substrate, and the inward transport of oxygen from air, chromium from Cr2N, and S from Mo2S3. This counter diffusion of various ions occurred easily via fine crystallites that constituted the coating, which had some solubility of S, O, and Fe.  相似文献   
984.
The relationship between the yield ratio and the material constants,b andN, of the Swift equation for hotrolled low carbon steels has been established. The yield ratio calculated by using the Swift equation agrees well with an experimentally obtained yield ratio. It was found that the yield ratio decreases with an increasing value ofN or with a decreasing value ofb. It was also found, however, that high yield strength is associated with small values of bothb andN. Therefore, to obtain both high yield strength and low yield ratio, a detailed microstructural control is needed to determine the optimum values ofb andN.  相似文献   
985.
We investigated the effect of the rinsing and drying technique on the oxygen and carbon concentration on a silicon surface. Rinsing in deionized water increased the interfacial oxygen concentration and helped generate defects. Blow-drying was more efficient than spin-drying in reducing interfacial oxygen concentration. Exposure to the atmosphere was detrimental to obtaining high crystallinity in the epitaxial layer. We evaluated the effectiveness of the cleaning process by observing the grown epilayer and the epilayer/substrate interface.  相似文献   
986.
Epitaxial and polycrystalline Bi4Ti3O12 thin films were prepared on single crystal (100) MgO substrates by a chemical solution deposition process using metal naphthenates as starting materials. Pyrolyzed films (at 500°C) were annealed for 30 min in air at 650, 700, 750 and 800°C, respectively. The effects of annealing temperature on the crystallinity, epitaxy and surface morphology of the films were investigated by X-ray diffraction θ-2θ scans, pole-figure analysis, and atomic force microscopy (AFM). Epitaxially grown films annealed at 700 and 750°C, respectively, showed growth of three-dimensional needle-shaped grains. During annealing at 800°C, grain growth of Bi4Ti3O12 may be suppressed by the formation of a titanium-rich phase such as Bi2Ti2O7 owing to Bi volatilization, resulting in lower root mean square roughness than that of film annealed at 750°C.  相似文献   
987.
To investigate the effects of introducing the iron compound on the carbonization behavior polyacrylonitile (PAN)-based electrospun nanofibers were carbonized with or without iron(III) acetylacetonate (AAI) over the temperature range of 900–1500 °C in nitrogen atmosphere. The morphological characteristics of the carbon nanofibers were investigated using X-ray diffractometer (XRD), Raman spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrical conductivity of the carbon nanofiber web was measured by four-point probe method. The iron catalyst had a profound effect on the crystal structure of the carbonized nanofiber. In the presence of AAI the nanofibers carbonized at 1300 °C developed graphite structure, which could be obtained at the temperature higher than 2000 °C in the absence of the catalyst. The in-plane size of the graphite crystals (La) was measured to be about 6.5 nm by Raman spectroscopy and the (0 0 2) spacing by XRD was 0.341 nm.  相似文献   
988.
W.J. Kim  Y.K. Sa  J.B. Lee  H.G. Jeong 《Intermetallics》2006,14(12):1391-1396
Superplastic deformation and crystallization behavior of a Cu54Ni6Zr22Ti18 metallic glass were investigated. A maximum elongation of 650% was obtained at 733 K at 1 × 10−2 s−1 from the sheet fabricated by squeeze copper-mold casting method. At low strain rates, the strain-rate-sensitivity exponent value was close to 1, suggesting that Newtonian-like behavior governed the plastic flow. At a high strain rate around 10−2 s−1, a transition from Newtonian to non-Newtonian behavior took place with decrease in m value. Large strain hardening by crystallization occurred during the course of deformation. The strain hardening was found to be caused by crystallization according to the analyses of the relation of true stress vs. testing time, T-T-T diagram and DSC characteristics. The time periods up to the strain before strain hardening at 733 K for the Cu54Ni6Zr22Ti18 metallic glass were similar to that of the Zr65Al10Ni10Cu15 metallic glass at 696 K as 180–300 s (3–5 min). This coincidence could be explained by comparison of their T-T-T diagrams showing that the incubation times for crystallization of the Cu BMG at 733 K and for Zr BMG at 696 K are similar.  相似文献   
989.
In a continuous casting steelmaking operation, the surface of a slab is under a condition that can be characterized as high-temperature, low-cycle fatigue in which the tensile and compressive stress is repeatedly developed. For this reason, for the evaluation of the hot ductility of a slab, considering the fatigue deformation is more feasible before a tensile or compressive test. In this study, the effects of low-cycle fatigue on the hot ductility of steels with a carbon content of 0.06–0.8 wt.% are investigated at various temperatures. For a carbon content of 0.06%, there were no significant differences between the RA values from a simple tensile test and those from a tensile test after fatigue deformation. The tendency of ductility deterioration with fatigue deformation is evident in 0.1 %C steel, and is due to the deformation-induced ferrite film that forms around the prior austenite grain. Conversely, high carbon steel containing 0.8 %C did not show a recovery of hot ductility in a low temperature region, and the specimen on which the tensile was measured after fatigue showed a higher hot ductility in the low temperature region, which is thought to result from the pearlite refinement effects. As the results obtained in this work showed noticeable differences in the hot ductility of carbon steel through the test conditions, it is suggested that for more accurate data, fatigue deformation be adopted in which the temperature range in an unbending operation is determined in the steelmaking factory.  相似文献   
990.
In the present study, the densification of Ti/TiB composites, the growth behavior ofin-situ formed TiB reinforcement, the effects of processing variables — such as reactant powder (TiB2, B4C), sintering temperature and time — on the microstructures and the mechanical properties ofin-situ processed Ti/TiB composites have been investigated. Mixtures of TiB2 or B4C powder with pure titanium powder were compacted and presintered at 700°C for 1 hr followed by sintering at 900, 1000, 1100, 1200, and 1300°C, respectively, for 3hrs. Some specimens were sintered at 1000°C for various times in order to study the formation behavior of TiB reinforcementin-situ formed within the pure Ti matrix. TiB reinforcements were formed through different mechanisms, such as the formation of fine TiB and the formation of coarse TiB by Ostwald ripening or the coalescence of fine TiB. There was no crystallographic relationship between TiB reinforcement and the matrix. There were voids at the interface between the TiB reinforcement and the Ti matrix due to the preferential growth of coarse TiB without a particular crystallographic relationship with pure Ti matrix and the surface energy between the Ti matrix and TiB reinforcements. Therefore, the densification of Ti/TiB2 compacts was hindered by the preferential growth of coarse TiB reinforcements. The mechanical properties ofin-situ processed composites were evaluated by measuring the compressive yield strength at ambient and high temperatures. The compressive yield strength of thein situ processed composites was higher than that of the Ti-6A1-4V alloy. It was also found that the compressive yield strength of the composite made from TiB2 reactant powder was higher than that of the composite made from B4C at the same volume fraction of reinforcement. A crack path examination suggested that the bonding nature of interface between matrix and reinforcement made from TiB2 reactant powder was better than that made from B4C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号